Günther, Martin
Online Knowledge Integration for 3D Semantic Mapping: A Survey
Igelbrink, Felix, Renz, Marian, Günther, Martin, Powell, Piper, Niecksch, Lennart, Lima, Oscar, Atzmueller, Martin, Hertzberg, Joachim
Semantic mapping is a key component of robots operating in and interacting with objects in structured environments. Traditionally, geometric and knowledge representations within a semantic map have only been loosely integrated. However, recent advances in deep learning now allow full integration of prior knowledge, represented as knowledge graphs or language concepts, into sensor data processing and semantic mapping pipelines. Semantic scene graphs and language models enable modern semantic mapping approaches to incorporate graph-based prior knowledge or to leverage the rich information in human language both during and after the mapping process. This has sparked substantial advances in semantic mapping, leading to previously impossible novel applications. This survey reviews these recent developments comprehensively, with a focus on online integration of knowledge into semantic mapping. We specifically focus on methods using semantic scene graphs for integrating symbolic prior knowledge and language models for respective capture of implicit common-sense knowledge and natural language concepts
An Ontology-based Multi-level Robot Architecture for Learning from Experiences
Rockel, Sebastian (University of Hamburg) | Neumann, Bernd (University of Hamburg) | Zhang, Jianwei (University of Hamburg) | Dubba, Sandeep Krishna Reddy (University of Leeds) | Cohn, Anthony G. (University of Leeds) | Konecny, Stefan (Örebro University) | Mansouri, Masoumeh (Örebro University) | Pecora, Federico (Örebro University) | Saffiotti, Alessandro (Örebro University) | Günther, Martin (University of Osnabrück) | Stock, Sebastian (University of Osnabrück) | Hertzberg, Joachim (University of Osnabrück) | Tome, Ana Maria (University of Aveiro ) | Pinho, Armando (University of Aveiro) | Lopes, Luis Seabra (University of Aveiro ) | Riegen, Stephanie von (HITeC e.V. ) | Hotz, Lothar (HITeC e.V.)
One way to improve the robustness and flexibility of robot performance is to let the robot learn from its experiences. In this paper, we describe the architecture and knowledge-representation framework for a service robot being developed in the EU project RACE, and present examples illustrating how learning from experiences will be achieved. As a unique innovative feature, the framework combines memory records of low-level robot activities with ontology-based high-level semantic descriptions.