Goto

Collaborating Authors

 Günther, Manuel


GHOST: Gaussian Hypothesis Open-Set Technique

arXiv.org Artificial Intelligence

Evaluations of large-scale recognition methods typically focus on overall performance. While this approach is common, it often fails to provide insights into performance across individual classes, which can lead to fairness issues and misrepresentation. Addressing these gaps is crucial for accurately assessing how well methods handle novel or unseen classes and ensuring a fair evaluation. To address fairness in Open-Set Recognition (OSR), we demonstrate that per-class performance can vary dramatically. We introduce Gaussian Hypothesis Open Set Technique (GHOST), a novel hyperparameter-free algorithm that models deep features using class-wise multivariate Gaussian distributions with diagonal covariance matrices. We apply Z-score normalization to logits to mitigate the impact of feature magnitudes that deviate from the model's expectations, thereby reducing the likelihood of the network assigning a high score to an unknown sample. We evaluate GHOST across multiple ImageNet-1K pre-trained deep networks and test it with four different unknown datasets. Using standard metrics such as AUOSCR, AUROC and FPR95, we achieve statistically significant improvements, advancing the state-of-the-art in large-scale OSR. Source code is provided online.


Large-Scale Evaluation of Open-Set Image Classification Techniques

arXiv.org Artificial Intelligence

The goal for classification is to correctly assign labels to unseen samples. However, most methods misclassify samples with unseen labels and assign them to one of the known classes. Open-Set Classification (OSC) algorithms aim to maximize both closed and open-set recognition capabilities. Recent studies showed the utility of such algorithms on small-scale data sets, but limited experimentation makes it difficult to assess their performances in real-world problems. Here, we provide a comprehensive comparison of various OSC algorithms, including training-based (SoftMax, Garbage, EOS) and post-processing methods (Maximum SoftMax Scores, Maximum Logit Scores, OpenMax, EVM, PROSER), the latter are applied on features from the former. We perform our evaluation on three large-scale protocols that mimic real-world challenges, where we train on known and negative open-set samples, and test on known and unknown instances. Our results show that EOS helps to improve performance of almost all post-processing algorithms. Particularly, OpenMax and PROSER are able to exploit better-trained networks, demonstrating the utility of hybrid models. However, while most algorithms work well on negative test samples -- samples of open-set classes seen during training -- they tend to perform poorly when tested on samples of previously unseen unknown classes, especially in challenging conditions.


Biased Binary Attribute Classifiers Ignore the Majority Classes

arXiv.org Artificial Intelligence

To visualize the regions of interest that classifiers base their decisions on, different Class Activation Mapping (CAM) methods have been developed. However, all of these techniques target categorical classifiers only, though most real-world tasks are binary classification. In this paper, we extend gradient-based CAM techniques to work with binary classifiers and visualize the active regions for binary facial attribute classifiers. When training an unbalanced binary classifier on an imbalanced dataset, it is well-known that the majority class, i.e. the class with many training samples, is mostly predicted much better than minority class with few training instances. In our experiments on the CelebA dataset, we verify these results, when training an unbalanced classifier to extract 40 facial attributes simultaneously. One would expect that the biased classifier has learned to extract features mainly for the majority classes and that the proportional energy of the activations mainly reside in certain specific regions of the image where the attribute is located. However, we find very little regular activation for samples of majority classes, while the active regions for minority classes seem mostly reasonable and overlap with our expectations. These results suggest that biased classifiers mainly rely on bias activation for majority classes. When training a balanced classifier on the imbalanced data by employing attribute-specific class weights, majority and minority classes are classified similarly well and show expected activations for almost all attributes


Bridging Trustworthiness and Open-World Learning: An Exploratory Neural Approach for Enhancing Interpretability, Generalization, and Robustness

arXiv.org Machine Learning

As researchers strive to narrow the gap between machine intelligence Contemporary artificial intelligence (AI) continues to furnish benefits and human through the development of artificial intelligence to real-society from economic and environmental perspectives, technologies, it is imperative that we recognize the critical among others [12, 33]. As AI gradually penetrates into high-risk importance of trustworthiness in open-world, which has become fields such as healthcare, finance and medicine, which are closely ubiquitous in all aspects of daily life for everyone. However, several related to human attributes, there is growing consensus awareness challenges may create a crisis of trust in current artificial intelligence that people urgently expect these AI solutions to be trustworthy systems that need to be bridged: 1) Insufficient explanation of [8, 16]. For instance, lenders expect the system to provide credible predictive results; 2) Inadequate generalization for learning models; explanations for rejecting their applications; engineers wish to develop 3) Poor adaptability to uncertain environments. Consequently, we common system interfaces to adapt to wider environments; explore a neural program to bridge trustworthiness and open-world businesspeople desire that the system can still operate effectively learning, extending from single-modal to multi-modal scenarios under various complex conditions, among other expectations.


Open-set Face Recognition with Neural Ensemble, Maximal Entropy Loss and Feature Augmentation

arXiv.org Artificial Intelligence

Open-set face recognition refers to a scenario in which biometric systems have incomplete knowledge of all existing subjects. Therefore, they are expected to prevent face samples of unregistered subjects from being identified as previously enrolled identities. This watchlist context adds an arduous requirement that calls for the dismissal of irrelevant faces by focusing mainly on subjects of interest. As a response, this work introduces a novel method that associates an ensemble of compact neural networks with a margin-based cost function that explores additional samples. Supplementary negative samples can be obtained from external databases or synthetically built at the representation level in training time with a new mix-up feature augmentation approach. Deep neural networks pre-trained on large face datasets serve as the preliminary feature extraction module. We carry out experiments on well-known LFW and IJB-C datasets where results show that the approach is able to boost closed and open-set identification rates.


Reducing Network Agnostophobia

Neural Information Processing Systems

Agnostophobia, the fear of the unknown, can be experienced by deep learning engineers while applying their networks to real-world applications. Unfortunately, network behavior is not well defined for inputs far from a networks training set. In an uncontrolled environment, networks face many instances that are not of interest to them and have to be rejected in order to avoid a false positive. This problem has previously been tackled by researchers by either a) thresholding softmax, which by construction cannot return "none of the known classes", or b) using an additional background or garbage class. In this paper, we show that both of these approaches help, but are generally insufficient when previously unseen classes are encountered.


Reducing Network Agnostophobia

Neural Information Processing Systems

Agnostophobia, the fear of the unknown, can be experienced by deep learning engineers while applying their networks to real-world applications. Unfortunately, network behavior is not well defined for inputs far from a networks training set. In an uncontrolled environment, networks face many instances that are not of interest to them and have to be rejected in order to avoid a false positive. This problem has previously been tackled by researchers by either a) thresholding softmax, which by construction cannot return "none of the known classes", or b) using an additional background or garbage class. In this paper, we show that both of these approaches help, but are generally insufficient when previously unseen classes are encountered. We also introduce a new evaluation metric that focuses on comparing the performance of multiple approaches in scenarios where such unseen classes or unknowns are encountered. Our major contributions are simple yet effective Entropic Open-Set and Objectosphere losses that train networks using negative samples from some classes. These novel losses are designed to maximize entropy for unknown inputs while increasing separation in deep feature space by modifying magnitudes of known and unknown samples. Experiments on networks trained to classify classes from MNIST and CIFAR-10 show that our novel loss functions are significantly better at dealing with unknown inputs from datasets such as Devanagari, NotMNIST, CIFAR-100 and SVHN.


Reducing Network Agnostophobia

Neural Information Processing Systems

Agnostophobia, the fear of the unknown, can be experienced by deep learning engineers while applying their networks to real-world applications. Unfortunately, network behavior is not well defined for inputs far from a networks training set. In an uncontrolled environment, networks face many instances that are not of interest to them and have to be rejected in order to avoid a false positive. This problem has previously been tackled by researchers by either a) thresholding softmax, which by construction cannot return "none of the known classes", or b) using an additional background or garbage class. In this paper, we show that both of these approaches help, but are generally insufficient when previously unseen classes are encountered. We also introduce a new evaluation metric that focuses on comparing the performance of multiple approaches in scenarios where such unseen classes or unknowns are encountered. Our major contributions are simple yet effective Entropic Open-Set and Objectosphere losses that train networks using negative samples from some classes. These novel losses are designed to maximize entropy for unknown inputs while increasing separation in deep feature space by modifying magnitudes of known and unknown samples. Experiments on networks trained to classify classes from MNIST and CIFAR-10 show that our novel loss functions are significantly better at dealing with unknown inputs from datasets such as Devanagari, NotMNIST, CIFAR-100 and SVHN.