Goto

Collaborating Authors

 Günter, Simon


Fast Iterative Kernel PCA

Neural Information Processing Systems

We introduce two methods to improve convergence of the Kernel Hebbian Algorithm (KHA)for iterative kernel PCA. KHA has a scalar gain parameter which is either held constant or decreased as 1/t, leading to slow convergence. Our KHA/et algorithm accelerates KHA by incorporating the reciprocal of the current estimated eigenvalues as a gain vector. We then derive and apply Stochastic Meta-Descent (SMD) to KHA/et; this further speeds convergence by performing gain adaptation in RKHS. Experimental results for kernel PCA and spectral clustering of USPS digits as well as motion capture and image de-noising problems confirm that our methods converge substantially faster than conventional KHA.