Goto

Collaborating Authors

 Gómez, Emilia


Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) plays a critical role in the advancement of autonomous driving. It is likely the main facilitator of high levels of automation, as there are certain technical issues that only seem to be resolvable through advanced AI systems, particularly those based on machine learning. However, the introduction of AI systems in the realm of driver assistance systems and automated driving systems creates new uncertainties due to specific characteristics of AI that make it a distinct technology from traditional systems developed in the field of motor vehicles. Some of these characteristics include unpredictability, opacity, self and continuous learning and lack of causality [1], among other horizontal features such as autonomy, complexity, overfitting and bias. As an example of the specificity that the introduction of AI systems in vehicles entails, the UNECE's Working Party on Automated/Autonomous and Connected Vehicles (GRVA) has been specifically discussing the impact of AI on vehicle regulations since 2020 [2].


Attribute Annotation and Bias Evaluation in Visual Datasets for Autonomous Driving

arXiv.org Artificial Intelligence

This paper addresses the often overlooked issue of fairness in the autonomous driving domain, particularly in vision-based perception and prediction systems, which play a pivotal role in the overall functioning of Autonomous Vehicles (AVs). We focus our analysis on biases present in some of the most commonly used visual datasets for training person and vehicle detection systems. We introduce an annotation methodology and a specialised annotation tool, both designed to annotate protected attributes of agents in visual datasets. We validate our methodology through an inter-rater agreement analysis and provide the distribution of attributes across all datasets. These include annotations for the attributes age, sex, skin tone, group, and means of transport for more than 90K people, as well as vehicle type, colour, and car type for over 50K vehicles. Generally, diversity is very low for most attributes, with some groups, such as children, wheelchair users, or personal mobility vehicle users, being extremely underrepresented in the analysed datasets. The study contributes significantly to efforts to consider fairness in the evaluation of perception and prediction systems for AVs. This paper follows reproducibility principles. The annotation tool, scripts and the annotated attributes can be accessed publicly at https://github.com/ec-jrc/humaint_annotator.


Use case cards: a use case reporting framework inspired by the European AI Act

arXiv.org Artificial Intelligence

Despite recent efforts by the Artificial Intelligence (AI) community to move towards standardised procedures for documenting models, methods, systems or datasets, there is currently no methodology focused on use cases aligned with the risk-based approach of the European AI Act (AI Act). In this paper, we propose a new framework for the documentation of use cases, that we call "use case cards", based on the use case modelling included in the Unified Markup Language (UML) standard. Unlike other documentation methodologies, we focus on the intended purpose and operational use of an AI system. It consists of two main parts. Firstly, a UML-based template, tailored to allow implicitly assessing the risk level of the AI system and defining relevant requirements. Secondly, a supporting UML diagram designed to provide information about the system-user interactions and relationships. The proposed framework is the result of a co-design process involving a relevant team of EU policy experts and scientists. We have validated our proposal with 11 experts with different backgrounds and a reasonable knowledge of the AI Act as a prerequisite. We provide the 5 "use case cards" used in the co-design and validation process. "Use case cards" allows framing and contextualising use cases in an effective way, and we hope this methodology can be a useful tool for policy makers and providers for documenting use cases, assessing the risk level, adapting the different requirements and building a catalogue of existing usages of AI.


Liability regimes in the age of AI: a use-case driven analysis of the burden of proof

arXiv.org Artificial Intelligence

New emerging technologies powered by Artificial Intelligence (AI) have the potential to disruptively transform our societies for the better. In particular, data-driven learning approaches (i.e., Machine Learning (ML)) have been a true revolution in the advancement of multiple technologies in various application domains. But at the same time there is growing concern about certain intrinsic characteristics of these methodologies that carry potential risks to both safety and fundamental rights. Although there are mechanisms in the adoption process to minimize these risks (e.g., safety regulations), these do not exclude the possibility of harm occurring, and if this happens, victims should be able to seek compensation. Liability regimes will therefore play a key role in ensuring basic protection for victims using or interacting with these systems. However, the same characteristics that make AI systems inherently risky, such as lack of causality, opacity, unpredictability or their self and continuous learning capabilities, may lead to considerable difficulties when it comes to proving causation. This paper presents three case studies, as well as the methodology to reach them, that illustrate these difficulties. Specifically, we address the cases of cleaning robots, delivery drones and robots in education. The outcome of the proposed analysis suggests the need to revise liability regimes to alleviate the burden of proof on victims in cases involving AI technologies.


Liability Regimes in the Age of AI: a Use-Case Driven Analysis of the Burden of Proof

Journal of Artificial Intelligence Research

New emerging technologies powered by Artificial Intelligence (AI) have the potential to disruptively transform our societies for the better. In particular, data-driven learning approaches (i.e., Machine Learning (ML)) have been a true revolution in the advancement of multiple technologies in various application domains. But at the same time there is growing concern about certain intrinsic characteristics of these methodologies that carry potential risks to both safety and fundamental rights. Although there are mechanisms in the adoption process to minimize these risks (e.g., safety regulations), these do not exclude the possibility of harm occurring, and if this happens, victims should be able to seek compensation. Liability regimes will therefore play a key role in ensuring basic protection for victims using or interacting with these systems. However, the same characteristics that make AI systems inherently risky, such as lack of causality, opacity, unpredictability or their self and continuous learning capabilities, may lead to considerable difficulties when it comes to proving causation. This paper presents three case studies, as well as the methodology to reach them, that illustrate these difficulties. Specifically, we address the cases of cleaning robots, delivery drones and robots in education. The outcome of the proposed analysis suggests the need to revise liability regimes to alleviate the burden of proof on victims in cases involving AI technologies. This article appears in the AI & Society track.


Deep Learning for Singing Processing: Achievements, Challenges and Impact on Singers and Listeners

arXiv.org Machine Learning

This paper summarizes some recent advances on a set of tasks related to the processing of singing using state-of-the-art deep learning techniques. We discuss their achievements in terms of accuracy and sound quality, and the current challenges, such as availability of data and computing resources. We also discuss the impact that these advances do and will have on listeners and singers when they are integrated in commercial applications.


A multidisciplinary task-based perspective for evaluating the impact of AI autonomy and generality on the future of work

arXiv.org Artificial Intelligence

This paper presents a multidisciplinary task approach for assessing the impact of artificial intelligence on the future of work. We provide definitions of a task from two main perspectives: socio-economic and computational. We propose to explore ways in which we can integrate or map these perspectives, and link them with the skills or capabilities required by them, for humans and AI systems. Finally, we argue that in order to understand the dynamics of tasks, we have to explore the relevance of autonomy and generality of AI systems for the automation or alteration of the workplace.


Assessing the impact of machine intelligence on human behaviour: an interdisciplinary endeavour

arXiv.org Artificial Intelligence

This document contains the outcome of the first Human behaviour and machine intelligence (HUMAINT) workshop that took place 5-6 March 2018 in Barcelona, Spain. The workshop was organized in the context of a new research programme at the Centre for Advanced Studies, Joint Research Centre of the European Commission, which focuses on studying the potential impact of artificial intelligence on human behaviour. The workshop gathered an interdisciplinary group of experts to establish the state of the art research in the field and a list of future research challenges to be addressed on the topic of human and machine intelligence, algorithm's potential impact on human cognitive capabilities and decision making, and evaluation and regulation needs. The document is made of short position statements and identification of challenges provided by each expert, and incorporates the result of the discussions carried out during the workshop. In the conclusion section, we provide a list of emerging research topics and strategies to be addressed in the near future.