Goto

Collaborating Authors

 Fugate, Sunny


Proceedings of the 1st International Workshop on Adaptive Cyber Defense

arXiv.org Artificial Intelligence

The 1st International Workshop on Adaptive Cyber Defense was held as part of the 2021 International Joint Conference on Artificial Intelligence. This workshop was organized to share research that explores unique applications of Artificial Intelligence (AI) and Machine Learning (ML) as foundational capabilities for the pursuit of adaptive cyber defense. The cyber domain cannot currently be reliably and effectively defended without extensive reliance on human experts. Skilled cyber defenders are in short supply and often cannot respond fast enough to cyber threats. Building on recent advances in AI and ML the Cyber defense research community has been motivated to develop new dynamic and sustainable defenses through the adoption of AI and ML techniques to both cyber and non-cyber settings. Bridging critical gaps between AI and Cyber researchers and practitioners can accelerate efforts to create semi-autonomous cyber defenses that can learn to recognize and respond to cyber attacks or discover and mitigate weaknesses in cooperation with other cyber operation systems and human experts. Furthermore, these defenses are expected to be adaptive and able to evolve over time to thwart changes in attacker behavior, changes in the system health and readiness, and natural shifts in user behavior over time. The Workshop (held on August 19th and 20th 2021 in Montreal-themed virtual reality) was comprised of technical presentations and a panel discussion focused on open problems and potential research solutions. Workshop submissions were peer reviewed by a panel of domain experts with a proceedings consisting of 10 technical articles exploring challenging problems of critical importance to national and global security. Participation in this workshop offered new opportunities to stimulate research and innovation in the emerging domain of adaptive and autonomous cyber defense.


Artificial Intelligence and Game Theory Models for Defending Critical Networks with Cyber Deception

AI Magazine

Traditional cyber security techniques have led to an asymmetric disadvantage for defenders. The defender must detect all possible threats at all times from all attackers and defend all systems against all possible exploitation. In contrast, an attacker needs only to find a single path to the defender’s critical information. In this article, we discuss how this asymmetry can be rebalanced using cyber deception to change the attacker’s perception of the network environment, and lead attackers to false beliefs about which systems contain critical information or are critical to a defender’s computing infrastructure. We introduce game theory concepts and models to represent and reason over the use of cyber deception by the defender and the effect it has on attacker perception. Finally, we discuss techniques for combining artificial intelligence algorithms with game theory models to estimate hidden states of the attacker using feedback through payoffs to learn how best to defend the system using cyber deception. It is our opinion that adaptive cyber deception is a necessary component of future information systems and networks. The techniques we present can simultaneously decrease the risks and impacts suffered by defenders and dramatically increase the costs and risks of detection for attackers. Such techniques are likely to play a pivotal role in defending national and international security concerns.