Fu, Yun
OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising
Zhang, Haichao, Xu, Yi, Lu, Hongsheng, Shimizu, Takayuki, Fu, Yun
Trajectory prediction is fundamental in computer vision and autonomous driving, particularly for understanding pedestrian behavior and enabling proactive decision-making. Existing approaches in this field often assume precise and complete observational data, neglecting the challenges associated with out-of-view objects and the noise inherent in sensor data due to limited camera range, physical obstructions, and the absence of ground truth for denoised sensor data. Such oversights are critical safety concerns, as they can result in missing essential, non-visible objects. To bridge this gap, we present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique. Our approach denoises noisy sensor observations in an unsupervised manner and precisely maps sensor-based trajectories of out-of-sight objects into visual trajectories. This method has demonstrated state-of-the-art performance in out-of-sight noisy sensor trajectory denoising and prediction on the Vi-Fi and JRDB datasets. By enhancing trajectory prediction accuracy and addressing the challenges of out-of-sight objects, our work significantly contributes to improving the safety and reliability of autonomous driving in complex environments. Our work represents the first initiative towards Out-Of-Sight Trajectory prediction (OOSTraj), setting a new benchmark for future research. The code is available at \url{https://github.com/Hai-chao-Zhang/OOSTraj}.
Don't Judge by the Look: Towards Motion Coherent Video Representation
Zhang, Yitian, Bai, Yue, Wang, Huan, Wang, Yizhou, Fu, Yun
While we do not focus on this particular problem, our method can partially address this issue as it will also cause hue variance in the background area and help the model to rely less on the foreground bias information as well. Knowledge Distillation is proposed to train a student network to mimic the behavior of a larger teacher model Hinton et al. (2015). To avoid the extra costs of teacher network in previous methods Park et al. (2019); Ahn et al. (2019); Tian et al. (2019), researchers have developed selfdistillation approaches that allow models to transfer their own knowledge into themselvesZhu et al. (2018); Xu & Liu (2019); Yun et al. (2020b); Zhang et al. (2019). Among them, CS-KD Yun et al. (2020b) and data distortion Xu & Liu (2019) are relevant to our work as both of them construct training pairs and encourage similar predictions. However, CS-KD uses different training samples within the class to construct the training pair, and data distortion applies the same augmentation to both training samples. In contrast, our method mainly focuses on the appearance variation in videos and utilizes the same sample with different appearances to learn the invariant representations.
Latent Graph Inference with Limited Supervision
Lu, Jianglin, Xu, Yi, Wang, Huan, Bai, Yue, Fu, Yun
Latent graph inference (LGI) aims to jointly learn the underlying graph structure and node representations from data features. However, existing LGI methods commonly suffer from the issue of supervision starvation, where massive edge weights are learned without semantic supervision and do not contribute to the training loss. Consequently, these supervision-starved weights, which may determine the predictions of testing samples, cannot be semantically optimal, resulting in poor generalization. In this paper, we observe that this issue is actually caused by the graph sparsification operation, which severely destroys the important connections established between pivotal nodes and labeled ones. To address this, we propose to restore the corrupted affinities and replenish the missed supervision for better LGI. The key challenge then lies in identifying the critical nodes and recovering the corrupted affinities. We begin by defining the pivotal nodes as $k$-hop starved nodes, which can be identified based on a given adjacency matrix. Considering the high computational burden, we further present a more efficient alternative inspired by CUR matrix decomposition. Subsequently, we eliminate the starved nodes by reconstructing the destroyed connections. Extensive experiments on representative benchmarks demonstrate that reducing the starved nodes consistently improves the performance of state-of-the-art LGI methods, especially under extremely limited supervision (6.12% improvement on Pubmed with a labeling rate of only 0.3%).
VaQuitA: Enhancing Alignment in LLM-Assisted Video Understanding
Wang, Yizhou, Zhang, Ruiyi, Wang, Haoliang, Bhattacharya, Uttaran, Fu, Yun, Wu, Gang
Recent advancements in language-model-based video understanding have been progressing at a remarkable pace, spurred by the introduction of Large Language Models (LLMs). However, the focus of prior research has been predominantly on devising a projection layer that maps video features to tokens, an approach that is both rudimentary and inefficient. In our study, we introduce a cutting-edge framework, VaQuitA, designed to refine the synergy between video and textual information. At the data level, instead of sampling frames uniformly, we implement a sampling method guided by CLIP-score rankings, which enables a more aligned selection of frames with the given question. At the feature level, we integrate a trainable Video Perceiver alongside a Visual-Query Transformer (abbreviated as VQ-Former), which bolsters the interplay between the input question and the video features. We also discover that incorporating a simple prompt, "Please be critical", into the LLM input can substantially enhance its video comprehension capabilities. Our experimental results indicate that VaQuitA consistently sets a new benchmark for zero-shot video question-answering tasks and is adept at producing high-quality, multi-turn video dialogues with users.
UniControl: A Unified Diffusion Model for Controllable Visual Generation In the Wild
Qin, Can, Zhang, Shu, Yu, Ning, Feng, Yihao, Yang, Xinyi, Zhou, Yingbo, Wang, Huan, Niebles, Juan Carlos, Xiong, Caiming, Savarese, Silvio, Ermon, Stefano, Fu, Yun, Xu, Ran
Achieving machine autonomy and human control often represent divergent objectives in the design of interactive AI systems. Visual generative foundation models such as Stable Diffusion show promise in navigating these goals, especially when prompted with arbitrary languages. However, they often fall short in generating images with spatial, structural, or geometric controls. The integration of such controls, which can accommodate various visual conditions in a single unified model, remains an unaddressed challenge. In response, we introduce UniControl, a new generative foundation model that consolidates a wide array of controllable condition-to-image (C2I) tasks within a singular framework, while still allowing for arbitrary language prompts. UniControl enables pixel-level-precise image generation, where visual conditions primarily influence the generated structures and language prompts guide the style and context. To equip UniControl with the capacity to handle diverse visual conditions, we augment pretrained text-to-image diffusion models and introduce a task-aware HyperNet to modulate the diffusion models, enabling the adaptation to different C2I tasks simultaneously. Trained on nine unique C2I tasks, UniControl demonstrates impressive zero-shot generation abilities with unseen visual conditions. Experimental results show that UniControl often surpasses the performance of single-task-controlled methods of comparable model sizes.
SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two Seconds
Li, Yanyu, Wang, Huan, Jin, Qing, Hu, Ju, Chemerys, Pavlo, Fu, Yun, Wang, Yanzhi, Tulyakov, Sergey, Ren, Jian
Text-to-image diffusion models can create stunning images from natural language descriptions that rival the work of professional artists and photographers. However, these models are large, with complex network architectures and tens of denoising iterations, making them computationally expensive and slow to run. As a result, high-end GPUs and cloud-based inference are required to run diffusion models at scale. This is costly and has privacy implications, especially when user data is sent to a third party. To overcome these challenges, we present a generic approach that, for the first time, unlocks running text-to-image diffusion models on mobile devices in less than $2$ seconds. We achieve so by introducing efficient network architecture and improving step distillation. Specifically, we propose an efficient UNet by identifying the redundancy of the original model and reducing the computation of the image decoder via data distillation. Further, we enhance the step distillation by exploring training strategies and introducing regularization from classifier-free guidance. Our extensive experiments on MS-COCO show that our model with $8$ denoising steps achieves better FID and CLIP scores than Stable Diffusion v$1.5$ with $50$ steps. Our work democratizes content creation by bringing powerful text-to-image diffusion models to the hands of users.
Layout Sequence Prediction From Noisy Mobile Modality
Zhang, Haichao, Xu, Yi, Lu, Hongsheng, Shimizu, Takayuki, Fu, Yun
Trajectory prediction plays a vital role in understanding pedestrian movement for applications such as autonomous driving and robotics. Current trajectory prediction models depend on long, complete, and accurately observed sequences from visual modalities. Nevertheless, real-world situations often involve obstructed cameras, missed objects, or objects out of sight due to environmental factors, leading to incomplete or noisy trajectories. To overcome these limitations, we propose LTrajDiff, a novel approach that treats objects obstructed or out of sight as equally important as those with fully visible trajectories. LTrajDiff utilizes sensor data from mobile phones to surmount out-of-sight constraints, albeit introducing new challenges such as modality fusion, noisy data, and the absence of spatial layout and object size information. We employ a denoising diffusion model to predict precise layout sequences from noisy mobile data using a coarse-to-fine diffusion strategy, incorporating the RMS, Siamese Masked Encoding Module, and MFM. Our model predicts layout sequences by implicitly inferring object size and projection status from a single reference timestamp or significantly obstructed sequences. Achieving SOTA results in randomly obstructed experiments and extremely short input experiments, our model illustrates the effectiveness of leveraging noisy mobile data. In summary, our approach offers a promising solution to the challenges faced by layout sequence and trajectory prediction models in real-world settings, paving the way for utilizing sensor data from mobile phones to accurately predict pedestrian bounding box trajectories. To the best of our knowledge, this is the first work that addresses severely obstructed and extremely short layout sequences by combining vision with noisy mobile modality, making it the pioneering work in the field of layout sequence trajectory prediction.
Camouflaged Image Synthesis Is All You Need to Boost Camouflaged Detection
Zhang, Haichao, Qin, Can, Yin, Yu, Fu, Yun
Camouflaged objects that blend into natural scenes pose significant challenges for deep-learning models to detect and synthesize. While camouflaged object detection is a crucial task in computer vision with diverse real-world applications, this research topic has been constrained by limited data availability. We propose a framework for synthesizing camouflage data to enhance the detection of camouflaged objects in natural scenes. Our approach employs a generative model to produce realistic camouflage images, which can be used to train existing object detection models. Specifically, we use a camouflage environment generator supervised by a camouflage distribution classifier to synthesize the camouflage images, which are then fed into our generator to expand the dataset. Our framework outperforms the current state-of-the-art method on three datasets (COD10k, CAMO, and CHAMELEON), demonstrating its effectiveness in improving camouflaged object detection. This approach can serve as a plug-and-play data generation and augmentation module for existing camouflaged object detection tasks and provides a novel way to introduce more diversity and distributions into current camouflage datasets.
Real-Time Neural Light Field on Mobile Devices
Cao, Junli, Wang, Huan, Chemerys, Pavlo, Shakhrai, Vladislav, Hu, Ju, Fu, Yun, Makoviichuk, Denys, Tulyakov, Sergey, Ren, Jian
Recent efforts in Neural Rendering Fields (NeRF) have shown impressive results on novel view synthesis by utilizing implicit neural representation to represent 3D scenes. Due to the process of volumetric rendering, the inference speed for NeRF is extremely slow, limiting the application scenarios of utilizing NeRF on resource-constrained hardware, such as mobile devices. Many works have been conducted to reduce the latency of running NeRF models. However, most of them still require high-end GPU for acceleration or extra storage memory, which is all unavailable on mobile devices. Another emerging direction utilizes the neural light field (NeLF) for speedup, as only one forward pass is performed on a ray to predict the pixel color. Nevertheless, to reach a similar rendering quality as NeRF, the network in NeLF is designed with intensive computation, which is not mobile-friendly. In this work, we propose an efficient network that runs in real-time on mobile devices for neural rendering. We follow the setting of NeLF to train our network. Unlike existing works, we introduce a novel network architecture that runs efficiently on mobile devices with low latency and small size, i.e., saving $15\times \sim 24\times$ storage compared with MobileNeRF. Our model achieves high-resolution generation while maintaining real-time inference for both synthetic and real-world scenes on mobile devices, e.g., $18.04$ms (iPhone 13) for rendering one $1008\times756$ image of real 3D scenes. Additionally, we achieve similar image quality as NeRF and better quality than MobileNeRF (PSNR $26.15$ vs. $25.91$ on the real-world forward-facing dataset).
Frame Flexible Network
Zhang, Yitian, Bai, Yue, Liu, Chang, Wang, Huan, Li, Sheng, Fu, Yun
Existing video recognition algorithms always conduct different training pipelines for inputs with different frame numbers, which requires repetitive training operations and multiplying storage costs. If we evaluate the model using other frames which are not used in training, we observe the performance will drop significantly (see Fig.1), which is summarized as Temporal Frequency Deviation phenomenon. To fix this issue, we propose a general framework, named Frame Flexible Network (FFN), which not only enables the model to be evaluated at different frames to adjust its computation, but also reduces the memory costs of storing multiple models significantly. Concretely, FFN integrates several sets of training sequences, involves Multi-Frequency Alignment (MFAL) to learn temporal frequency invariant representations, and leverages Multi-Frequency Adaptation (MFAD) to further strengthen the representation abilities. Comprehensive empirical validations using various architectures and popular benchmarks solidly demonstrate the effectiveness and generalization of FFN (e.g., 7.08/5.15/2.17% performance gain at Frame 4/8/16 on Something-Something V1 dataset over Uniformer). Code is available at https://github.com/BeSpontaneous/FFN.