Fu, Yongjie
AI-Powered Urban Transportation Digital Twin: Methods and Applications
Di, Xuan, Fu, Yongjie, Turkcan, Mehmet K., Ghasemi, Mahshid, Mo, Zhaobin, Zang, Chengbo, Adhikari, Abhishek, Kostic, Zoran, Zussman, Gil
We present a survey paper on methods and applications of digital twins (DT) for urban traffic management. While the majority of studies on the DT focus on its "eyes," which is the emerging sensing and perception like object detection and tracking, what really distinguishes the DT from a traditional simulator lies in its ``brain," the prediction and decision making capabilities of extracting patterns and making informed decisions from what has been seen and perceived. In order to add values to urban transportation management, DTs need to be powered by artificial intelligence and complement with low-latency high-bandwidth sensing and networking technologies. We will first review the DT pipeline leveraging cyberphysical systems and propose our DT architecture deployed on a real-world testbed in New York City. This survey paper can be a pointer to help researchers and practitioners identify challenges and opportunities for the development of DTs; a bridge to initiate conversations across disciplines; and a road map to exploiting potentials of DTs for diverse urban transportation applications.
Physics-Informed Deep Learning For Traffic State Estimation: A Survey and the Outlook
Di, Xuan, Shi, Rongye, Mo, Zhaobin, Fu, Yongjie
For its robust predictive power (compared to pure physics-based models) and sample-efficient training (compared to pure deep learning models), physics-informed deep learning (PIDL), a paradigm hybridizing physics-based models and deep neural networks (DNN), has been booming in science and engineering fields. One key challenge of applying PIDL to various domains and problems lies in the design of a computational graph that integrates physics and DNNs. In other words, how physics are encoded into DNNs and how the physics and data components are represented. In this paper, we provide a variety of architecture designs of PIDL computational graphs and how these structures are customized to traffic state estimation (TSE), a central problem in transportation engineering. When observation data, problem type, and goal vary, we demonstrate potential architectures of PIDL computational graphs and compare these variants using the same real-world dataset.
CVLight: Deep Reinforcement Learning for Adaptive Traffic Signal Control with Connected Vehicles
Li, Wangzhi, Cai, Yaxing, Dinesha, Ujwal, Fu, Yongjie, Di, Xuan
This paper develops a reinforcement learning (RL) scheme for adaptive traffic signal control (ATSC), called "CVLight", that leverages data collected only from connected vehicles (CV). Seven types of RL models are proposed within this scheme that contain various state and reward representations, including incorporation of CV delay and green light duration into state and the usage of CV delay as reward. To further incorporate information of both CV and non-CV into CVLight, an algorithm based on actor-critic, A2C-Full, is proposed where both CV and non-CV information is used to train the critic network, while only CV information is used to update the policy network and execute optimal signal timing. These models are compared at an isolated intersection under various CV market penetration rates. A full model with the best performance (i.e., minimum average travel delay per vehicle) is then selected and applied to compare with state-of-the-art benchmarks under different levels of traffic demands, turning proportions, and dynamic traffic demands, respectively. Two case studies are performed on an isolated intersection and a corridor with three consecutive intersections located in Manhattan, New York, to further demonstrate the effectiveness of the proposed algorithm under real-world scenarios. Compared to other baseline models that use all vehicle information, the trained CVLight agent can efficiently control multiple intersections solely based on CV data and can achieve a similar or even greater performance when the CV penetration rate is no less than 20%.