Goto

Collaborating Authors

 Fu, Yan


Knowledge Distillation with Training Wheels

arXiv.org Artificial Intelligence

Knowledge distillation is used, in generative language modeling, to train a smaller student model using the help of a larger teacher model, resulting in improved capabilities for the student model. In this paper, we formulate a more general framework for knowledge distillation where the student learns from the teacher during training, and also learns to ask for the teacher's help at test-time following rules specifying test-time restrictions. Towards this, we first formulate knowledge distillation as an entropy-regularized value optimization problem. Adopting Path Consistency Learning to solve this, leads to a new knowledge distillation algorithm using on-policy and off-policy demonstrations. We extend this using constrained reinforcement learning to a framework that incorporates the use of the teacher model as a test-time reference, within constraints. In this situation, akin to a human learner, the model needs to learn not only the learning material, but also the relative difficulty of different sections to prioritize for seeking teacher help. We examine the efficacy of our method through experiments in translation and summarization tasks, observing trends in accuracy and teacher use, noting that our approach unlocks operating points not available to the popular Speculative Decoding approach.


Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI techniques, are unlocking new challenges and opportunities in biological discovery. Here, we highlight key areas where AI is driving innovation, from data analysis to new biological insights. These include developing an AI-friendly ecosystem for proteomics data generation, sharing, and analysis; improving peptide and protein identification and quantification; characterizing protein-protein interactions and protein complexes; advancing spatial and perturbation proteomics; integrating multi-omics data; and ultimately enabling AI-empowered virtual cells.


Multi-Task-oriented Nighttime Haze Imaging Enhancer for Vision-driven Measurement Systems

arXiv.org Artificial Intelligence

--Salient object detection (SOD) plays a critical role in intelligent transportation systems (ITS), facilitating the detection and segmentation of key visual elements in an image. However, adverse imaging conditions such as haze during the day, low light, and haze at night severely degrade image quality and hinder reliable object detection in real-world scenarios. T o address these challenges, we propose a multi-knowledge-oriented nighttime haze imaging enhancer (MKoIE), which integrates three tasks: daytime dehazing, low-light enhancement, and nighttime dehaz-ing. The MKoIE incorporates two key innovative components: First, the network employs a task-oriented node learning mechanism to handle three specific degradation types: day-time haze, low light, and night-time haze conditions, with an embedded self-attention module enhancing its performance in nighttime imaging. In addition, multi-receptive field enhancement module that efficiently extracts multi-scale features through three parallel depthwise separable convolution branches with different dilation rates, capturing comprehensive spatial information with minimal computational overhead to meet the requirements of real-time ITS deployment. T o ensure optimal image reconstruction quality and visual characteristics, we suggest a hybrid loss function. Extensive experiments on different types of weather/imaging conditions illustrate that MKoIE surpasses existing methods, enhancing the reliability, accuracy, and operational efficiency of ITS. The code is available at https://github.com/Ai-Chen-Lab/ ALIENT object detection (SOD) [1], [2] is a critical technology in vision-driven intelligent transportation systems (VITS), enabling the rapid and accurate identification of key objects from real-time traffic images, such as vehicles, pedestrians, and road infrastructure. High-quality SOD is essential for ensuring safety, optimizing traffic flow, and supporting automated decision-making in modern transportation networks.


Predicting Critical Nodes in Temporal Networks by Dynamic Graph Convolutional Networks

arXiv.org Artificial Intelligence

Many real-world systems can be expressed in temporal networks with nodes playing far different roles in structure and function and edges representing the relationships between nodes. Identifying critical nodes can help us control the spread of public opinions or epidemics, predict leading figures in academia, conduct advertisements for various commodities, and so on. However, it is rather difficult to identify critical nodes because the network structure changes over time in temporal networks. In this paper, considering the sequence topological information of temporal networks, a novel and effective learning framework based on the combination of special GCNs and RNNs is proposed to identify nodes with the best spreading ability. The effectiveness of the approach is evaluated by weighted Susceptible-Infected-Recovered model. Experimental results on four real-world temporal networks demonstrate that the proposed method outperforms both traditional and deep learning benchmark methods in terms of the Kendall $\tau$ coefficient and top $k$ hit rate.


Cross-Modal Alignment with Mixture Experts Neural Network for Intral-City Retail Recommendation

arXiv.org Artificial Intelligence

In this paper, we introduce Cross-modal Alignment with mixture experts Neural Network (CameNN) recommendation model for intral-city retail industry, which aims to provide fresh foods and groceries retailing within 5 hours delivery service arising for the outbreak of Coronavirus disease (COVID-19) pandemic around the world. We propose CameNN, which is a multi-task model with three tasks including Image to Text Alignment (ITA) task, Text to Image Alignment (TIA) task and CVR prediction task. We use pre-trained BERT to generate the text embedding and pre-trained InceptionV4 to generate image patch embedding (each image is split into small patches with the same pixels and treat each patch as an image token). Softmax gating networks follow to learn the weight of each transformer expert output and choose only a subset of experts conditioned on the input. Then transformer encoder is applied as the share-bottom layer to learn all input features' shared interaction. Next, mixture of transformer experts (MoE) layer is implemented to model different aspects of tasks. At top of the MoE layer, we deploy a transformer layer for each task as task tower to learn task-specific information. On the real word intra-city dataset, experiments demonstrate CameNN outperform baselines and achieve significant improvements on the image and text representation. In practice, we applied CameNN on CVR prediction in our intra-city recommender system which is one of the leading intra-city platforms operated in China.


Enhancing Answer Boundary Detection for Multilingual Machine Reading Comprehension

arXiv.org Artificial Intelligence

Multilingual pre-trained models could leverage the training data from a rich source language (such as English) to improve performance on low resource languages. However, the transfer quality for multilingual Machine Reading Comprehension (MRC) is significantly worse than sentence classification tasks mainly due to the requirement of MRC to detect the word level answer boundary. In this paper, we propose two auxiliary tasks in the fine-tuning stage to create additional phrase boundary supervision: (1) A mixed MRC task, which translates the question or passage to other languages and builds cross-lingual question-passage pairs; (2) A language-agnostic knowledge masking task by leveraging knowledge phrases mined from web. Besides, extensive experiments on two cross-lingual MRC datasets show the effectiveness of our proposed approach.


Resource Mention Extraction for MOOC Discussion Forums

arXiv.org Artificial Intelligence

In discussions hosted on discussion forums for MOOCs, references to online learning resources are often of central importance. They contextualize the discussion, anchoring the discussion participants' presentation of the issues and their understanding. However they are usually mentioned in free text, without appropriate hyperlinking to their associated resource. Automated learning resource mention hyperlinking and categorization will facilitate discussion and searching within MOOC forums, and also benefit the contextualization of such resources across disparate views. We propose the novel problem of learning resource mention identification in MOOC forums. As this is a novel task with no publicly available data, we first contribute a large-scale labeled dataset, dubbed the Forum Resource Mention (FoRM) dataset, to facilitate our current research and future research on this task. We then formulate this task as a sequence tagging problem and investigate solution architectures to address the problem. Importantly, we identify two major challenges that hinder the application of sequence tagging models to the task: (1) the diversity of resource mention expression, and (2) long-range contextual dependencies. We address these challenges by incorporating character-level and thread context information into a LSTM-CRF model. First, we incorporate a character encoder to address the out-of-vocabulary problem caused by the diversity of mention expressions. Second, to address the context dependency challenge, we encode thread contexts using an RNN-based context encoder, and apply the attention mechanism to selectively leverage useful context information during sequence tagging. Experiments on FoRM show that the proposed method improves the baseline deep sequence tagging models notably, significantly bettering performance on instances that exemplify the two challenges.