Goto

Collaborating Authors

 Fu, Xue-Yong


Query-OPT: Optimizing Inference of Large Language Models via Multi-Query Instructions in Meeting Summarization

arXiv.org Artificial Intelligence

This work focuses on the task of query-based meeting summarization in which the summary of a context (meeting transcript) is generated in response to a specific query. When using Large Language Models (LLMs) for this task, a new call to the LLM inference endpoint/API is required for each new query even if the context stays the same. However, repeated calls to the LLM inference endpoints would significantly increase the costs of using them in production, making LLMs impractical for many real-world use cases. To address this problem, in this paper, we investigate whether combining the queries for the same input context in a single prompt to minimize repeated calls can be successfully used in meeting summarization. In this regard, we conduct extensive experiments by comparing the performance of various popular LLMs: GPT-4, PaLM-2, LLaMA-2, Mistral, and FLAN-T5 in single-query and multi-query settings. We observe that while most LLMs tend to respond to the multi-query instructions, almost all of them (except GPT-4), even after fine-tuning, could not properly generate the response in the required output format. We conclude that while multi-query prompting could be useful to optimize the inference costs by reducing calls to the inference endpoints/APIs for the task of meeting summarization, this capability to reliably generate the response in the expected format is only limited to certain LLMs.


Tiny Titans: Can Smaller Large Language Models Punch Above Their Weight in the Real World for Meeting Summarization?

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated impressive capabilities to solve a wide range of tasks without being explicitly fine-tuned on task-specific datasets. However, deploying LLMs in the real world is not trivial, as it requires substantial computing resources. In this paper, we investigate whether smaller, compact LLMs are a good alternative to the comparatively Larger LLMs2 to address significant costs associated with utilizing LLMs in the real world. In this regard, we study the meeting summarization task in a real-world industrial environment and conduct extensive experiments by comparing the performance of fine-tuned compact LLMs (e.g., FLAN-T5, TinyLLaMA, LiteLLaMA) with zero-shot larger LLMs (e.g., LLaMA-2, GPT-3.5, PaLM-2). We observe that most smaller LLMs, even after fine-tuning, fail to outperform larger zero-shot LLMs in meeting summarization datasets. However, a notable exception is FLAN-T5 (780M parameters), which performs on par or even better than many zero-shot Larger LLMs (from 7B to above 70B parameters), while being significantly smaller. This makes compact LLMs like FLAN-T5 a suitable cost-efficient solution for real-world industrial deployment.


Building Real-World Meeting Summarization Systems using Large Language Models: A Practical Perspective

arXiv.org Artificial Intelligence

This paper studies how to effectively build meeting summarization systems for real-world usage using large language models (LLMs). For this purpose, we conduct an extensive evaluation and comparison of various closed-source and open-source LLMs, namely, GPT-4, GPT- 3.5, PaLM-2, and LLaMA-2. Our findings reveal that most closed-source LLMs are generally better in terms of performance. However, much smaller open-source models like LLaMA- 2 (7B and 13B) could still achieve performance comparable to the large closed-source models even in zero-shot scenarios. Considering the privacy concerns of closed-source models for only being accessible via API, alongside the high cost associated with using fine-tuned versions of the closed-source models, the opensource models that can achieve competitive performance are more advantageous for industrial use. Balancing performance with associated costs and privacy concerns, the LLaMA-2-7B model looks more promising for industrial usage. In sum, this paper offers practical insights on using LLMs for real-world business meeting summarization, shedding light on the trade-offs between performance and cost.


Are Large Language Models Reliable Judges? A Study on the Factuality Evaluation Capabilities of LLMs

arXiv.org Artificial Intelligence

In recent years, Large Language Models (LLMs) have gained immense attention due to their notable emergent capabilities, surpassing those seen in earlier language models. A particularly intriguing application of LLMs is their role as evaluators for texts produced by various generative models. In this study, we delve into the potential of LLMs as reliable assessors of factual consistency in summaries generated by text-generation models. Initially, we introduce an innovative approach for factuality assessment using LLMs. This entails employing a singular LLM for the entirety of the question-answering-based factuality scoring process. Following this, we examine the efficacy of various LLMs in direct factuality scoring, benchmarking them against traditional measures and human annotations. Contrary to initial expectations, our results indicate a lack of significant correlations between factuality metrics and human evaluations, specifically for GPT-4 and PaLM-2. Notable correlations were only observed with GPT-3.5 across two factuality subcategories. These consistent findings across various factual error categories suggest a fundamental limitation in the current LLMs' capability to accurately gauge factuality. This version presents the information more concisely while maintaining the main points and findings of the original text.


AI Coach Assist: An Automated Approach for Call Recommendation in Contact Centers for Agent Coaching

arXiv.org Artificial Intelligence

In recent years, the utilization of Artificial Intelligence (AI) in the contact center industry is on the rise. One area where AI can have a significant impact is in the coaching of contact center agents. By analyzing call transcripts using Natural Language Processing (NLP) techniques, it would be possible to quickly determine which calls are most relevant for coaching purposes. In this paper, we present AI Coach Assist, which leverages the pre-trained transformer-based language models to determine whether a given call is coachable or not based on the quality assurance (QA) questions asked by the contact center managers or supervisors. The system was trained and evaluated on a large dataset collected from real-world contact centers and provides an effective way to recommend calls to the contact center managers that are more likely to contain coachable moments. Our experimental findings demonstrate the potential of AI Coach Assist to improve the coaching process, resulting in enhancing the performance of contact center agents.