Goto

Collaborating Authors

 Fu, Sunyang


A Literature Review and Framework for Human Evaluation of Generative Large Language Models in Healthcare

arXiv.org Artificial Intelligence

As generative artificial intelligence (AI), particularly Large Language Models (LLMs), continues to permeate healthcare, it remains crucial to supplement traditional automated evaluations with human expert evaluation. Understanding and evaluating the generated texts is vital for ensuring safety, reliability, and effectiveness. However, the cumbersome, time-consuming, and non-standardized nature of human evaluation presents significant obstacles to the widespread adoption of LLMs in practice. This study reviews existing literature on human evaluation methodologies for LLMs within healthcare. We highlight a notable need for a standardized and consistent human evaluation approach. Our extensive literature search, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, spans publications from January 2018 to February 2024. This review provides a comprehensive overview of the human evaluation approaches used in diverse healthcare applications.This analysis examines the human evaluation of LLMs across various medical specialties, addressing factors such as evaluation dimensions, sample types, and sizes, the selection and recruitment of evaluators, frameworks and metrics, the evaluation process, and statistical analysis of the results. Drawing from diverse evaluation strategies highlighted in these studies, we propose a comprehensive and practical framework for human evaluation of generative LLMs, named QUEST: Quality of Information, Understanding and Reasoning, Expression Style and Persona, Safety and Harm, and Trust and Confidence. This framework aims to improve the reliability, generalizability, and applicability of human evaluation of generative LLMs in different healthcare applications by defining clear evaluation dimensions and offering detailed guidelines.


BiomedGPT: A Unified and Generalist Biomedical Generative Pre-trained Transformer for Vision, Language, and Multimodal Tasks

arXiv.org Artificial Intelligence

Conventional task- and modality-specific artificial intelligence (AI) models are inflexible in real-world deployment and maintenance for biomedicine. At the same time, the growing availability of biomedical data, coupled with the advancements in modern multi-modal multi-task AI techniques, has paved the way for the emergence of generalist biomedical AI solutions. These solutions hold the potential to interpret different medical modalities and produce expressive outputs such as free-text reports or disease diagnosis. Here, we propose BiomedGPT, the first open-source and generalist visual language AI for diverse biomedical tasks. BiomedGPT achieved 16 state-of-the-art results across five clinically significant tasks on 26 datasets. Notably, it outperformed OpenAI's GPT-4 with vision (GPT-4V) in radiology human evaluation and surpassed Google's Med-PaLM M (12B) in breast cancer diagnosis and medical visual question answering. Moreover, BiomedGPT facilitates zero-shot transfer learning, greatly enhancing its utility as a biomedical assistant, similar to ChatGPT. Our method demonstrates effective training with diverse datasets can lead to more practical biomedical AI.


Detecting Reddit Users with Depression Using a Hybrid Neural Network

arXiv.org Artificial Intelligence

Depression is a widespread mental health issue, affecting an estimated 3.8% of the global population. It is also one of the main contributors to disability worldwide. Recently it is becoming popular for individuals to use social media platforms (e.g., Reddit) to express their difficulties and health issues (e.g., depression) and seek support from other users in online communities. It opens great opportunities to automatically identify social media users with depression by parsing millions of posts for potential interventions. Deep learning methods have begun to dominate in the field of machine learning and natural language processing (NLP) because of their ease of use, efficient processing, and state-of-the-art results on many NLP tasks. In this work, we propose a hybrid deep learning model which combines a pretrained sentence BERT (SBERT) and convolutional neural network (CNN) to detect individuals with depression with their Reddit posts. The sentence BERT is used to learn the meaningful representation of semantic information in each post. CNN enables the further transformation of those embeddings and the temporal identification of behavioral patterns of users. We trained and evaluated the model performance to identify Reddit users with depression by utilizing the Self-reported Mental Health Diagnoses (SMHD) data. The hybrid deep learning model achieved an accuracy of 0.86 and an F1 score of 0.86 and outperformed the state-of-the-art documented result (F1 score of 0.79) by other machine learning models in the literature. The results show the feasibility of the hybrid model to identify individuals with depression. Although the hybrid model is validated to detect depression with Reddit posts, it can be easily tuned and applied to other text classification tasks and different clinical applications.


Neural Language Models with Distant Supervision to Identify Major Depressive Disorder from Clinical Notes

arXiv.org Artificial Intelligence

Major depressive disorder (MDD) is a prevalent psychiatric disorder that is associated with significant healthcare burden worldwide. Phenotyping of MDD can help early diagnosis and consequently may have significant advantages in patient management. In prior research MDD phenotypes have been extracted from structured Electronic Health Records (EHR) or using Electroencephalographic (EEG) data with traditional machine learning models to predict MDD phenotypes. However, MDD phenotypic information is also documented in free-text EHR data, such as clinical notes. While clinical notes may provide more accurate phenotyping information, natural language processing (NLP) algorithms must be developed to abstract such information. Recent advancements in NLP resulted in state-of-the-art neural language models, such as Bidirectional Encoder Representations for Transformers (BERT) model, which is a transformer-based model that can be pre-trained from a corpus of unsupervised text data and then fine-tuned on specific tasks. However, such neural language models have been underutilized in clinical NLP tasks due to the lack of large training datasets. In the literature, researchers have utilized the distant supervision paradigm to train machine learning models on clinical text classification tasks to mitigate the issue of lacking annotated training data. It is still unknown whether the paradigm is effective for neural language models. In this paper, we propose to leverage the neural language models in a distant supervision paradigm to identify MDD phenotypes from clinical notes. The experimental results indicate that our proposed approach is effective in identifying MDD phenotypes and that the Bio- Clinical BERT, a specific BERT model for clinical data, achieved the best performance in comparison with conventional machine learning models.