Goto

Collaborating Authors

 Fu, Guanghui


Deep Learning-Based Feature Fusion for Emotion Analysis and Suicide Risk Differentiation in Chinese Psychological Support Hotlines

arXiv.org Artificial Intelligence

Mental health is a critical global public health issue, and psychological support hotlines play a pivotal role in providing mental health assistance and identifying suicide risks at an early stage. However, the emotional expressions conveyed during these calls remain underexplored in current research. This study introduces a method that combines pitch acoustic features with deep learning-based features to analyze and understand emotions expressed during hotline interactions. Using data from China's largest psychological support hotline, our method achieved an F1-score of 79.13% for negative binary emotion classification.Additionally, the proposed approach was validated on an open dataset for multi-class emotion classification,where it demonstrated better performance compared to the state-of-the-art methods. To explore its clinical relevance, we applied the model to analysis the frequency of negative emotions and the rate of emotional change in the conversation, comparing 46 subjects with suicidal behavior to those without. While the suicidal group exhibited more frequent emotional changes than the non-suicidal group, the difference was not statistically significant.Importantly, our findings suggest that emotional fluctuation intensity and frequency could serve as novel features for psychological assessment scales and suicide risk prediction.The proposed method provides valuable insights into emotional dynamics and has the potential to advance early intervention and improve suicide prevention strategies through integration with clinical tools and assessments The source code is publicly available at https://github.com/Sco-field/Speechemotionrecognition/tree/main.


SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms

arXiv.org Artificial Intelligence

The human brain receives nutrients and oxygen through an intricate network of blood vessels. Pathology affecting small vessels, at the mesoscopic scale, represents a critical vulnerability within the cerebral blood supply and can lead to severe conditions, such as Cerebral Small Vessel Diseases. The advent of 7 Tesla MRI systems has enabled the acquisition of higher spatial resolution images, making it possible to visualise such vessels in the brain. However, the lack of publicly available annotated datasets has impeded the development of robust, machine learning-driven segmentation algorithms. To address this, the SMILE-UHURA challenge was organised. This challenge, held in conjunction with the ISBI 2023, in Cartagena de Indias, Colombia, aimed to provide a platform for researchers working on related topics. The SMILE-UHURA challenge addresses the gap in publicly available annotated datasets by providing an annotated dataset of Time-of-Flight angiography acquired with 7T MRI. This dataset was created through a combination of automated pre-segmentation and extensive manual refinement. In this manuscript, sixteen submitted methods and two baseline methods are compared both quantitatively and qualitatively on two different datasets: held-out test MRAs from the same dataset as the training data (with labels kept secret) and a separate 7T ToF MRA dataset where both input volumes and labels are kept secret. The results demonstrate that most of the submitted deep learning methods, trained on the provided training dataset, achieved reliable segmentation performance. Dice scores reached up to 0.838 $\pm$ 0.066 and 0.716 $\pm$ 0.125 on the respective datasets, with an average performance of up to 0.804 $\pm$ 0.15.


MentalGLM Series: Explainable Large Language Models for Mental Health Analysis on Chinese Social Media

arXiv.org Artificial Intelligence

As the prevalence of mental health challenges, social media has emerged as a key platform for individuals to express their emotions.Deep learning tends to be a promising solution for analyzing mental health on social media. However, black box models are often inflexible when switching between tasks, and their results typically lack explanations. With the rise of large language models (LLMs), their flexibility has introduced new approaches to the field. Also due to the generative nature, they can be prompted to explain decision-making processes. However, their performance on complex psychological analysis still lags behind deep learning. In this paper, we introduce the first multi-task Chinese Social Media Interpretable Mental Health Instructions (C-IMHI) dataset, consisting of 9K samples, which has been quality-controlled and manually validated. We also propose MentalGLM series models, the first open-source LLMs designed for explainable mental health analysis targeting Chinese social media, trained on a corpus of 50K instructions. The proposed models were evaluated on three downstream tasks and achieved better or comparable performance compared to deep learning models, generalized LLMs, and task fine-tuned LLMs. We validated a portion of the generated decision explanations with experts, showing promising results. We also evaluated the proposed models on a clinical dataset, where they outperformed other LLMs, indicating their potential applicability in the clinical field. Our models show strong performance, validated across tasks and perspectives. The decision explanations enhance usability and facilitate better understanding and practical application of the models. Both the constructed dataset and the models are publicly available via: https://github.com/zwzzzQAQ/MentalGLM.


SOS-1K: A Fine-grained Suicide Risk Classification Dataset for Chinese Social Media Analysis

arXiv.org Artificial Intelligence

In the social media, users frequently express personal emotions, a subset of which may indicate potential suicidal tendencies. The implicit and varied forms of expression in internet language complicate accurate and rapid identification of suicidal intent on social media, thus creating challenges for timely intervention efforts. The development of deep learning models for suicide risk detection is a promising solution, but there is a notable lack of relevant datasets, especially in the Chinese context. To address this gap, this study presents a Chinese social media dataset designed for fine-grained suicide risk classification, focusing on indicators such as expressions of suicide intent, methods of suicide, and urgency of timing. Seven pre-trained models were evaluated in two tasks: high and low suicide risk, and fine-grained suicide risk classification on a level of 0 to 10. In our experiments, deep learning models show good performance in distinguishing between high and low suicide risk, with the best model achieving an F1 score of 88.39%. However, the results for fine-grained suicide risk classification were still unsatisfactory, with an weighted F1 score of 50.89%. To address the issues of data imbalance and limited dataset size, we investigated both traditional and advanced, large language model based data augmentation techniques, demonstrating that data augmentation can enhance model performance by up to 4.65% points in F1-score. Notably, the Chinese MentalBERT model, which was pre-trained on psychological domain data, shows superior performance in both tasks. This study provides valuable insights for automatic identification of suicidal individuals, facilitating timely psychological intervention on social media platforms. The source code and data are publicly available.


AI-Enhanced Cognitive Behavioral Therapy: Deep Learning and Large Language Models for Extracting Cognitive Pathways from Social Media Texts

arXiv.org Artificial Intelligence

Cognitive Behavioral Therapy (CBT) is an effective technique for addressing the irrational thoughts stemming from mental illnesses, but it necessitates precise identification of cognitive pathways to be successfully implemented in patient care. In current society, individuals frequently express negative emotions on social media on specific topics, often exhibiting cognitive distortions, including suicidal behaviors in extreme cases. Yet, there is a notable absence of methodologies for analyzing cognitive pathways that could aid psychotherapists in conducting effective interventions online. In this study, we gathered data from social media and established the task of extracting cognitive pathways, annotating the data based on a cognitive theoretical framework. We initially categorized the task of extracting cognitive pathways as a hierarchical text classification with four main categories and nineteen subcategories. Following this, we structured a text summarization task to help psychotherapists quickly grasp the essential information. Our experiments evaluate the performance of deep learning and large language models (LLMs) on these tasks. The results demonstrate that our deep learning method achieved a micro-F1 score of 62.34% in the hierarchical text classification task. Meanwhile, in the text summarization task, GPT-4 attained a Rouge-1 score of 54.92 and a Rouge-2 score of 30.86, surpassing the experimental deep learning model's performance. However, it may suffer from an issue of hallucination. We have made all models and codes publicly available to support further research in this field.


Chinese MentalBERT: Domain-Adaptive Pre-training on Social Media for Chinese Mental Health Text Analysis

arXiv.org Artificial Intelligence

In the current environment, psychological issues are prevalent and widespread, with social media serving as a key outlet for individuals to share their feelings. This results in the generation of vast quantities of data daily, where negative emotions have the potential to precipitate crisis situations. There is a recognized need for models capable of efficient analysis. While pre-trained language models have demonstrated their effectiveness broadly, there's a noticeable gap in pre-trained models tailored for specialized domains like psychology. To address this, we have collected a huge dataset from Chinese social media platforms and enriched it with publicly available datasets to create a comprehensive database encompassing 3.36 million text entries. To enhance the model's applicability to psychological text analysis, we integrated psychological lexicons into the pre-training masking mechanism. Building on an existing Chinese language model, we performed adaptive training to develop a model specialized for the psychological domain. We assessed our model's effectiveness across four public benchmarks, where it not only surpassed the performance of standard pre-trained models but also showed a inclination for making psychologically relevant predictions. Due to concerns regarding data privacy, the dataset will not be made publicly available. However, we have made the pre-trained models and codes publicly accessible to the community via: https://github.com/zwzzzQAQ/Chinese-MentalBERT.


Comparative Analysis of ImageNet Pre-Trained Deep Learning Models and DINOv2 in Medical Imaging Classification

arXiv.org Artificial Intelligence

Medical image analysis frequently encounters data scarcity challenges. Transfer learning has been effective in addressing this issue while conserving computational resources. The recent advent of foundational models like the DINOv2, which uses the vision transformer architecture, has opened new opportunities in the field and gathered significant interest. However, DINOv2's performance on clinical data still needs to be verified. In this paper, we performed a glioma grading task using three clinical modalities of brain MRI data. We compared the performance of various pre-trained deep learning models, including those based on ImageNet and DINOv2, in a transfer learning context. Our focus was on understanding the impact of the freezing mechanism on performance. We also validated our findings on three other types of public datasets: chest radiography, fundus radiography, and dermoscopy. Our findings indicate that in our clinical dataset, DINOv2's performance was not as strong as ImageNet-based pre-trained models, whereas in public datasets, DINOv2 generally outperformed other models, especially when using the frozen mechanism. Similar performance was observed with various sizes of DINOv2 models across different tasks. In summary, DINOv2 is viable for medical image classification tasks, particularly with data resembling natural images. However, its effectiveness may vary with data that significantly differs from natural images such as MRI. In addition, employing smaller versions of the model can be adequate for medical task, offering resource-saving benefits. Our codes are available at https://github.com/GuanghuiFU/medical_DINOv2_eval.


Towards a Psychological Generalist AI: A Survey of Current Applications of Large Language Models and Future Prospects

arXiv.org Artificial Intelligence

The complexity of psychological principles underscore a significant societal challenge, given the vast social implications of psychological problems. Bridging the gap between understanding these principles and their actual clinical and real-world applications demands rigorous exploration and adept implementation. In recent times, the swift advancement of highly adaptive and reusable artificial intelligence (AI) models has emerged as a promising way to unlock unprecedented capabilities in the realm of psychology. This paper emphasizes the importance of performance validation for these large-scale AI models, emphasizing the need to offer a comprehensive assessment of their verification from diverse perspectives. Moreover, we review the cutting-edge advancements and practical implementations of these expansive models in psychology, highlighting pivotal work spanning areas such as social media analytics, clinical nursing insights, vigilant community monitoring, and the nuanced exploration of psychological theories. Based on our review, we project an acceleration in the progress of psychological fields, driven by these large-scale AI models. These future generalist AI models harbor the potential to substantially curtail labor costs and alleviate social stress. However, this forward momentum will not be without its set of challenges, especially when considering the paradigm changes and upgrades required for medical instrumentation and related applications.


Morphology-Enhanced CAM-Guided SAM for weakly supervised Breast Lesion Segmentation

arXiv.org Artificial Intelligence

Breast cancer diagnosis challenges both patients and clinicians, with early detection being crucial for effective treatment. Ultrasound imaging plays a key role in this, but its utility is hampered by the need for precise lesion segmentation-a task that is both time-consuming and labor-intensive. To address these challenges, we propose a new framework: a morphology-enhanced, Class Activation Map (CAM)-guided model, which is optimized using a computer vision foundation model known as SAM. This innovative framework is specifically designed for weakly supervised lesion segmentation in early-stage breast ultrasound images. Our approach uniquely leverages image-level annotations, which removes the requirement for detailed pixel-level annotation. Initially, we perform a preliminary segmentation using breast lesion morphology knowledge. Following this, we accurately localize lesions by extracting semantic information through a CAM-based heatmap. These two elements are then fused together, serving as a prompt to guide the SAM in performing refined segmentation. Subsequently, post-processing techniques are employed to rectify topological errors made by the SAM. Our method not only simplifies the segmentation process but also attains accuracy comparable to supervised learning methods that rely on pixel-level annotation. Our framework achieves a Dice score of 74.39% on the test set, demonstrating compareable performance with supervised learning methods. Additionally, it outperforms a supervised learning model, in terms of the Hausdorff distance, scoring 24.27 compared to Deeplabv3+'s 32.22. These experimental results showcase its feasibility and superior performance in integrating weakly supervised learning with SAM. The code is made available at: https://github.com/YueXin18/MorSeg-CAM-SAM.


Supervised Learning and Large Language Model Benchmarks on Mental Health Datasets: Cognitive Distortions and Suicidal Risks in Chinese Social Media

arXiv.org Artificial Intelligence

In the realm of social media, users frequently convey personal sentiments, with some potentially indicating cognitive distortions or suicidal tendencies. Timely recognition of such signs is pivotal for effective interventions. In response, we introduce two novel annotated datasets from Chinese social media, focused on cognitive distortions and suicidal risk classification. We propose a comprehensive benchmark using both supervised learning and large language models, especially from the GPT series, to evaluate performance on these datasets. To assess the capabilities of the large language models, we employed three strategies: zero-shot, few-shot, and fine-tuning. Furthermore, we deeply explored and analyzed the performance of these large language models from a psychological perspective, shedding light on their strengths and limitations in identifying and understanding complex human emotions. Our evaluations underscore a performance difference between the two approaches, with the models often challenged by subtle category distinctions. While GPT-4 consistently delivered strong results, GPT-3.5 showed marked improvement in suicide risk classification after fine-tuning. This research is groundbreaking in its evaluation of large language models for Chinese social media tasks, accentuating the models' potential in psychological contexts. All datasets and code are made available.