Goto

Collaborating Authors

 Fu, Dongmei


From Histopathology Images to Cell Clouds: Learning Slide Representations with Hierarchical Cell Transformer

arXiv.org Artificial Intelligence

It is clinically crucial and potentially very beneficial to be able to analyze and model directly the spatial distributions of cells in histopathology whole slide images (WSI). However, most existing WSI datasets lack cell-level annotations, owing to the extremely high cost over giga-pixel images. Thus, it remains an open question whether deep learning models can directly and effectively analyze WSIs from the semantic aspect of cell distributions. In this work, we construct a large-scale WSI dataset with more than 5 billion cell-level annotations, termed WSI-Cell5B, and a novel hierarchical Cell Cloud Transformer (CCFormer) to tackle these challenges. WSI-Cell5B is based on 6,998 WSIs of 11 cancers from The Cancer Genome Atlas Program, and all WSIs are annotated per cell by coordinates and types. To the best of our knowledge, WSI-Cell5B is the first WSI-level large-scale dataset integrating cell-level annotations. On the other hand, CCFormer formulates the collection of cells in each WSI as a cell cloud and models cell spatial distribution. Specifically, Neighboring Information Embedding (NIE) is proposed to characterize the distribution of cells within the neighborhood of each cell, and a novel Hierarchical Spatial Perception (HSP) module is proposed to learn the spatial relationship among cells in a bottom-up manner. The clinical analysis indicates that WSI-Cell5B can be used to design clinical evaluation metrics based on counting cells that effectively assess the survival risk of patients. Extensive experiments on survival prediction and cancer staging show that learning from cell spatial distribution alone can already achieve state-of-the-art (SOTA) performance, i.e., CCFormer strongly outperforms other competing methods.


Bridging the Semantic-Numerical Gap: A Numerical Reasoning Method of Cross-modal Knowledge Graph for Material Property Prediction

arXiv.org Artificial Intelligence

Using machine learning (ML) techniques to predict material properties is a crucial research topic. These properties depend on numerical data and semantic factors. Due to the limitations of small-sample datasets, existing methods typically adopt ML algorithms to regress numerical properties or transfer other pre-trained knowledge graphs (KGs) to the material. However, these methods cannot simultaneously handle semantic and numerical information. In this paper, we propose a numerical reasoning method for material KGs (NR-KG), which constructs a cross-modal KG using semantic nodes and numerical proxy nodes. It captures both types of information by projecting KG into a canonical KG and utilizes a graph neural network to predict material properties. In this process, a novel projection prediction loss is proposed to extract semantic features from numerical information. NR-KG facilitates end-to-end processing of cross-modal data, mining relationships and cross-modal information in small-sample datasets, and fully utilizes valuable experimental data to enhance material prediction. We further propose two new High-Entropy Alloys (HEA) property datasets with semantic descriptions. NR-KG outperforms state-of-the-art (SOTA) methods, achieving relative improvements of 25.9% and 16.1% on two material datasets. Besides, NR-KG surpasses SOTA methods on two public physical chemistry molecular datasets, showing improvements of 22.2% and 54.3%, highlighting its potential application and generalizability. We hope the proposed datasets, algorithms, and pre-trained models can facilitate the communities of KG and AI for materials.


MM-NeRF: Multimodal-Guided 3D Multi-Style Transfer of Neural Radiance Field

arXiv.org Artificial Intelligence

3D style transfer aims to generate stylized views of 3D scenes with specified styles, which requires high-quality generating and keeping multi-view consistency. Existing methods still suffer the challenges of high-quality stylization with texture details and stylization with multimodal guidance. In this paper, we reveal that the common training method of stylization with NeRF, which generates stylized multi-view supervision by 2D style transfer models, causes the same object in supervision to show various states (color tone, details, etc.) in different views, leading NeRF to tend to smooth the texture details, further resulting in low-quality rendering for 3D multi-style transfer. To tackle these problems, we propose a novel Multimodal-guided 3D Multi-style transfer of NeRF, termed MM-NeRF. First, MM-NeRF projects multimodal guidance into a unified space to keep the multimodal styles consistency and extracts multimodal features to guide the 3D stylization. Second, a novel multi-head learning scheme is proposed to relieve the difficulty of learning multi-style transfer, and a multi-view style consistent loss is proposed to track the inconsistency of multi-view supervision data. Finally, a novel incremental learning mechanism to generalize MM-NeRF to any new style with small costs. Extensive experiments on several real-world datasets show that MM-NeRF achieves high-quality 3D multi-style stylization with multimodal guidance, and keeps multi-view consistency and style consistency between multimodal guidance. Codes will be released.


Learning Structure-Guided Diffusion Model for 2D Human Pose Estimation

arXiv.org Artificial Intelligence

One of the mainstream schemes for 2D human pose estimation (HPE) is learning keypoints heatmaps by a neural network. Existing methods typically improve the quality of heatmaps by customized architectures, such as high-resolution representation and vision Transformers. In this paper, we propose \textbf{DiffusionPose}, a new scheme that formulates 2D HPE as a keypoints heatmaps generation problem from noised heatmaps. During training, the keypoints are diffused to random distribution by adding noises and the diffusion model learns to recover ground-truth heatmaps from noised heatmaps with respect to conditions constructed by image feature. During inference, the diffusion model generates heatmaps from initialized heatmaps in a progressive denoising way. Moreover, we further explore improving the performance of DiffusionPose with conditions from human structural information. Extensive experiments show the prowess of our DiffusionPose, with improvements of 1.6, 1.2, and 1.2 mAP on widely-used COCO, CrowdPose, and AI Challenge datasets, respectively.


Learning Spatiotemporal Frequency-Transformer for Low-Quality Video Super-Resolution

arXiv.org Artificial Intelligence

Abstract--Video Super-Resolution (VSR) aims to restore high-resolution (HR) videos from low-resolution (LR) videos. Existing VSR techniques usually recover HR frames by extracting pertinent textures from nearby frames with known degradation processes. Despite significant progress, grand challenges are remained to effectively extract and transmit high-quality textures from high-degraded low-quality sequences, such as blur, additive noises, and compression artifacts. In this work, a novel Frequency-Transformer (FTVSR) is proposed for handling low-quality videos that carry out self-attention in a combined space-time-frequency domain. First, video frames are split into patches and each patch is transformed into spectral maps in which each channel represents a frequency band. It permits a fine-grained self-attention on each frequency band, so that real visual texture can be distinguished from artifacts. Second, a novel dual frequency attention (DFA) mechanism is proposed to capture the global frequency relations and local frequency relations, which can handle different complicated degradation processes in real-world scenarios. Third, we explore different self-attention schemes for video processing in the frequency domain and discover that a "divided attention" which conducts a joint space-frequency attention before applying temporal-frequency attention, leads to the best video enhancement quality. Extensive experiments on three widely-used VSR datasets show that FTVSR outperforms state-of-the-art methods on different low-quality videos with clear visual margins.


Geodesic Clustering in Deep Generative Models

arXiv.org Machine Learning

Deep generative models are tremendously successful in learning low-dimensional latent representations that well-describe the data. These representations, however, tend to much distort relationships between points, i.e. pairwise distances tend to not reflect semantic similarities well. This renders unsupervised tasks, such as clustering, difficult when working with the latent representations. We demonstrate that taking the geometry of the generative model into account is sufficient to make simple clustering algorithms work well over latent representations. Leaning on the recent finding that deep generative models constitute stochastically immersed Riemannian manifolds, we propose an efficient algorithm for computing geodesics (shortest paths) and computing distances in the latent space, while taking its distortion into account. We further propose a new architecture for modeling uncertainty in variational autoencoders, which is essential for understanding the geometry of deep generative models. Experiments show that the geodesic distance is very likely to reflect the internal structure of the data.