Fu, Cheng
IOPO: Empowering LLMs with Complex Instruction Following via Input-Output Preference Optimization
Zhang, Xinghua, Yu, Haiyang, Fu, Cheng, Huang, Fei, Li, Yongbin
In the realm of large language models (LLMs), the ability of models to accurately follow instructions is paramount as more agents and applications leverage LLMs for construction, where the complexity of instructions are rapidly increasing. However, on the one hand, there is only a certain amount of complex instruction evaluation data; on the other hand, there are no dedicated algorithms to improve the ability to follow complex instructions. To this end, this paper introduces TRACE, a benchmark for improving and evaluating the complex instructionfollowing ability, which consists of 120K training data and 1K evaluation data. Furthermore, we propose IOPO (Input-Output Preference Optimization) alignment method which takes both input and output preference pairs into consideration, where LLMs not only rapidly align with response preferences but also meticulously explore the instruction preferences. Extensive experiments on both in-domain and outof-domain datasets confirm the effectiveness of IOPO, showing 8.15%, 2.18% improvements on in-domain data and 6.29%, 3.13% on outof-domain data compared to SFT and DPO respectively.
Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA
Wang, Minzheng, Chen, Longze, Fu, Cheng, Liao, Shengyi, Zhang, Xinghua, Wu, Bingli, Yu, Haiyang, Xu, Nan, Zhang, Lei, Luo, Run, Li, Yunshui, Yang, Min, Huang, Fei, Li, Yongbin
Long-context modeling capabilities have garnered widespread attention, leading to the emergence of Large Language Models (LLMs) with ultra-context windows. Meanwhile, benchmarks for evaluating long-context LLMs are gradually catching up. However, existing benchmarks employ irrelevant noise texts to artificially extend the length of test cases, diverging from the real-world scenarios of long-context applications. To bridge this gap, we propose a novel long-context benchmark, Loong, aligning with realistic scenarios through extended multi-document question answering (QA). Unlike typical document QA, in Loong's test cases, each document is relevant to the final answer, ignoring any document will lead to the failure of the answer. Furthermore, Loong introduces four types of tasks with a range of context lengths: Spotlight Locating, Comparison, Clustering, and Chain of Reasoning, to facilitate a more realistic and comprehensive evaluation of long-context understanding. Extensive experiments indicate that existing long-context language models still exhibit considerable potential for enhancement. Retrieval augmented generation (RAG) achieves poor performance, demonstrating that Loong can reliably assess the model's long-context modeling capabilities.
Self-Retrieval: Building an Information Retrieval System with One Large Language Model
Tang, Qiaoyu, Chen, Jiawei, Yu, Bowen, Lu, Yaojie, Fu, Cheng, Yu, Haiyang, Lin, Hongyu, Huang, Fei, He, Ben, Han, Xianpei, Sun, Le, Li, Yongbin
The rise of large language models (LLMs) has transformed the role of information retrieval (IR) systems in the way to humans accessing information. Due to the isolated architecture and the limited interaction, existing IR systems are unable to fully accommodate the shift from directly providing information to humans to indirectly serving large language models. In this paper, we propose Self-Retrieval, an end-to-end, LLM-driven information retrieval architecture that can fully internalize the required abilities of IR systems into a single LLM and deeply leverage the capabilities of LLMs during IR process. Specifically, Self-retrieval internalizes the corpus to retrieve into a LLM via a natural language indexing architecture. Then the entire retrieval process is redefined as a procedure of document generation and self-assessment, which can be end-to-end executed using a single large language model. Experimental results demonstrate that Self-Retrieval not only significantly outperforms previous retrieval approaches by a large margin, but also can significantly boost the performance of LLM-driven downstream applications like retrieval augumented generation.
Unified Language Representation for Question Answering over Text, Tables, and Images
Yu, Bowen, Fu, Cheng, Yu, Haiyang, Huang, Fei, Li, Yongbin
When trying to answer complex questions, people often rely on multiple sources of information, such as visual, textual, and tabular data. Previous approaches to this problem have focused on designing input features or model structure in the multi-modal space, which is inflexible for cross-modal reasoning or data-efficient training. In this paper, we call for an alternative paradigm, which transforms the images and tables into unified language representations, so that we can simplify the task into a simpler textual QA problem that can be solved using three steps: retrieval, ranking, and generation, all within a language space. This idea takes advantage of the power of pre-trained language models and is implemented in a framework called Solar. Our experimental results show that Solar outperforms all existing methods by 10.6-32.3 pts on two datasets, MultimodalQA and MMCoQA, across ten different metrics. Additionally, Solar achieves the best performance on the WebQA leaderboard
Coarse-to-Fine Knowledge Selection for Document Grounded Dialogs
Zhang, Yeqin, Fu, Haomin, Fu, Cheng, Yu, Haiyang, Li, Yongbin, Nguyen, Cam-Tu
Multi-document grounded dialogue systems (DGDS) belong to a class of conversational agents that answer users' requests by finding supporting knowledge from a collection of documents. Most previous studies aim to improve the knowledge retrieval model or propose more effective ways to incorporate external knowledge into a parametric generation model. These methods, however, focus on retrieving knowledge from mono-granularity language units (e.g. passages, sentences, or spans in documents), which is not enough to effectively and efficiently capture precise knowledge in long documents. This paper proposes Re3G, which aims to optimize both coarse-grained knowledge retrieval and fine-grained knowledge extraction in a unified framework. Specifically, the former efficiently finds relevant passages in a retrieval-and-reranking process, whereas the latter effectively extracts finer-grain spans within those passages to incorporate into a parametric answer generation model (BART, T5). Experiments on DialDoc Shared Task demonstrate the effectiveness of our method.
Layout-Aware Information Extraction for Document-Grounded Dialogue: Dataset, Method and Demonstration
Zhang, Zhenyu, Yu, Bowen, Yu, Haiyang, Liu, Tingwen, Fu, Cheng, Li, Jingyang, Tang, Chengguang, Sun, Jian, Li, Yongbin
Building document-grounded dialogue systems have received growing interest as documents convey a wealth of human knowledge and commonly exist in enterprises. Wherein, how to comprehend and retrieve information from documents is a challenging research problem. Previous work ignores the visual property of documents and treats them as plain text, resulting in incomplete modality. In this paper, we propose a Layout-aware document-level Information Extraction dataset, LIE, to facilitate the study of extracting both structural and semantic knowledge from visually rich documents (VRDs), so as to generate accurate responses in dialogue systems. LIE contains 62k annotations of three extraction tasks from 4,061 pages in product and official documents, becoming the largest VRD-based information extraction dataset to the best of our knowledge. We also develop benchmark methods that extend the token-based language model to consider layout features like humans. Empirical results show that layout is critical for VRD-based extraction, and system demonstration also verifies that the extracted knowledge can help locate the answers that users care about.
Measuring Place Function Similarity with Trajectory Embedding
Fu, Cheng, Weibel, Robert
Modeling place functions from a computational perspective is a prevalent research topic. The technology of embedding enables a new approach that allows modeling the function of a place by its chronological context as part of a trajectory. The embedding similarity was previously proposed as a new metric for measuring the similarity of place functions, with some preliminary results. This study explores if this approach is meaningful for geographical units at a much smaller geographical granularity compared to previous studies. In addition, this study investigates if the geographical distance can influence the embedding similarity. The empirical evaluations based on a big vehicle trajectory data set confirm that the embedding similarity can be a metric proxy for place functions. However, the results also show that the embedding similarity is still bounded by the distance at the local scale.
Towards Fast and Energy-Efficient Binarized Neural Network Inference on FPGA
Fu, Cheng, Zhu, Shilin, Su, Hao, Lee, Ching-En, Zhao, Jishen
Binarized Neural Network (BNN) removes bitwidth redundancy in classical CNN by using a single bit (-1/+1) for network parameters and intermediate representations, which has greatly reduced the off-chip data transfer and storage overhead. However, a large amount of computation redundancy still exists in BNN inference. By analyzing local properties of images and the learned BNN kernel weights, we observe an average of $\sim$78% input similarity and $\sim$59% weight similarity among weight kernels, measured by our proposed metric in common network architectures. Thus there does exist redundancy that can be exploited to further reduce the amount of on-chip computations. Motivated by the observation, in this paper, we proposed two types of fast and energy-efficient architectures for BNN inference. We also provide analysis and insights to pick the better strategy of these two for different datasets and network models. By reusing the results from previous computation, much cycles for data buffer access and computations can be skipped. By experiments, we demonstrate that 80% of the computation and 40% of the buffer access can be skipped by exploiting BNN similarity. Thus, our design can achieve 17% reduction in total power consumption, 54% reduction in on-chip power consumption and 2.4$\times$ maximum speedup, compared to the baseline without applying our reuse technique. Our design also shows 1.9$\times$ more area-efficiency compared to state-of-the-art BNN inference design. We believe our deployment of BNN on FPGA leads to a promising future of running deep learning models on mobile devices.