Goto

Collaborating Authors

 Frias-Martinez, Enrique


Topic Models to Infer Socio-Economic Maps

AAAI Conferences

Socio-economic maps contain important information regarding the population of a country. Computing these maps is critical given that policy makers often times make important decisions based upon such information. However, the compilation of socio-economic maps requires extensive resources and becomes highly expensive. On the other hand, the ubiquitous presence of cell phones, is generating large amounts of spatiotemporal data that can reveal human behavioral traits related to specific socio-economic characteristics. Traditional inference approaches have taken advantage of these datasets to infer regional socio-economic characteristics. In this paper, we propose a novel approach whereby topic models are used to infer socio-economic levels from large-scale spatio-temporal data. Instead of using a pre-determined set of features, we use latent Dirichlet Allocation (LDA) to extract latent recurring patterns of co-occurring behaviors across regions, which are then used in the prediction of socio-economic levels. We show that our approach improves state of the art prediction results by 9%.


A Gender-Centric Analysis of Calling Behavior in a Developing Economy Using Call Detail Records

AAAI Conferences

The gender divide in the access to technology in developing economies makes gender characterization and automatic gender identification two of the most critical needs for improving cell phone-based services. Gender identification has been typically solved using voice or image processing.   However, such techniques cannot be applied to cell phone networks mostly due to privacy concerns. In this paper, we present a study aimed at characterizing and automatically identifying the gender of a cell phone user in a developing economy based on behavioral, social and mobility variables. Our contributions are twofold: (1) understanding the role that gender plays on phone usage, and (2) evaluating common machine learning approaches for gender identification. The analysis was carried out using the encrypted CDRs (Call Detail Records) of approximately 10,000 users from a developing economy, whose gender was known a priori. Our results indicate that behavioral and social variables, including the number of input/output calls and the in degree/out degree of the social network, reveal statistically significant differences between male and female callers. Finally, we propose a new gender identification algorithm that can achieve classification rates of up to 80% when the percentage of predicted instances is reduced.