Goto

Collaborating Authors

 Frery, Alejandro C.


The Geodesic Distance between $\mathcal{G}_I^0$ Models and its Application to Region Discrimination

arXiv.org Machine Learning

The $\mathcal{G}_I^0$ distribution is able to characterize different regions in monopolarized SAR imagery. It is indexed by three parameters: the number of looks (which can be estimated in the whole image), a scale parameter and a texture parameter. This paper presents a new proposal for feature extraction and region discrimination in SAR imagery, using the geodesic distance as a measure of dissimilarity between $\mathcal{G}_I^0$ models. We derive geodesic distances between models that describe several practical situations, assuming the number of looks known, for same and different texture and for same and different scale. We then apply this new tool to the problems of (i)~identifying edges between regions with different texture, and (ii)~quantify the dissimilarity between pairs of samples in actual SAR data. We analyze the advantages of using the geodesic distance when compared to stochastic distances.


Distinguishing noise from chaos: objective versus subjective criteria using Horizontal Visibility Graph

arXiv.org Machine Learning

A recently proposed methodology called the Horizontal Visibility Graph (HVG) [Luque {\it et al.}, Phys. Rev. E., 80, 046103 (2009)] that constitutes a geometrical simplification of the well known Visibility Graph algorithm [Lacasa {\it et al.\/}, Proc. Natl. Sci. U.S.A. 105, 4972 (2008)], has been used to study the distinction between deterministic and stochastic components in time series [L. Lacasa and R. Toral, Phys. Rev. E., 82, 036120 (2010)]. Specifically, the authors propose that the node degree distribution of these processes follows an exponential functional of the form $P(\kappa)\sim \exp(-\lambda~\kappa)$, in which $\kappa$ is the node degree and $\lambda$ is a positive parameter able to distinguish between deterministic (chaotic) and stochastic (uncorrelated and correlated) dynamics. In this work, we investigate the characteristics of the node degree distributions constructed by using HVG, for time series corresponding to $28$ chaotic maps and $3$ different stochastic processes. We thoroughly study the methodology proposed by Lacasa and Toral finding several cases for which their hypothesis is not valid. We propose a methodology that uses the HVG together with Information Theory quantifiers. An extensive and careful analysis of the node degree distributions obtained by applying HVG allow us to conclude that the Fisher-Shannon information plane is a remarkable tool able to graphically represent the different nature, deterministic or stochastic, of the systems under study.


A New Algorithm of Speckle Filtering using Stochastic Distances

arXiv.org Machine Learning

This paper presents a new approach for filter design based on stochastic distances and tests between distributions. A window is defined around each pixel, overlapping samples are compared and only those which pass a goodness-of-fit test are used to compute the filtered value. The technique is applied to intensity SAR data with homogeneous regions using the Gamma model. The proposal is compared with the Lee's filter using a protocol based on Monte Carlo. Among the criteria used to quantify the quality of filters, we employ the equivalent number of looks, line and edge preservation. Moreover, we also assessed the filters by the Universal Image Quality Index and the Pearson's correlation on edges regions.


SAR Image Despeckling Algorithms using Stochastic Distances and Nonlocal Means

arXiv.org Machine Learning

This paper presents two approaches for filter design based on stochastic distances for intensity speckle reduction. A window is defined around each pixel, overlapping samples are compared and only those which pass a goodness-of-fit test are used to compute the filtered value. The tests stem from stochastic divergences within the Information Theory framework. The technique is applied to intensity Synthetic Aperture Radar (SAR) data with homogeneous regions using the Gamma model. The first approach uses a Nagao-Matsuyama-type procedure for setting the overlapping samples, and the second uses the nonlocal method. The proposals are compared with the Improved Sigma filter and with anisotropic diffusion for speckled data (SRAD) using a protocol based on Monte Carlo simulation. Among the criteria used to quantify the quality of filters, we employ the equivalent number of looks, and line and edge preservation. Moreover, we also assessed the filters by the Universal Image Quality Index and by the Pearson correlation between edges. Applications to real images are also discussed. The proposed methods show good results.


Analytic Expressions for Stochastic Distances Between Relaxed Complex Wishart Distributions

arXiv.org Machine Learning

The scaled complex Wishart distribution is a widely used model for multilook full polarimetric SAR data whose adequacy has been attested in the literature. Classification, segmentation, and image analysis techniques which depend on this model have been devised, and many of them employ some type of dissimilarity measure. In this paper we derive analytic expressions for four stochastic distances between relaxed scaled complex Wishart distributions in their most general form and in important particular cases. Using these distances, inequalities are obtained which lead to new ways of deriving the Bartlett and revised Wishart distances. The expressiveness of the four analytic distances is assessed with respect to the variation of parameters. Such distances are then used for deriving new tests statistics, which are proved to have asymptotic chi-square distribution. Adopting the test size as a comparison criterion, a sensitivity study is performed by means of Monte Carlo experiments suggesting that the Bhattacharyya statistic outperforms all the others. The power of the tests is also assessed. Applications to actual data illustrate the discrimination and homogeneity identification capabilities of these distances.


Speckle Reduction in Polarimetric SAR Imagery with Stochastic Distances and Nonlocal Means

arXiv.org Machine Learning

This paper presents a technique for reducing speckle in Polarimetric Synthetic Aperture Radar (PolSAR) imagery using Nonlocal Means and a statistical test based on stochastic divergences. The main objective is to select homogeneous pixels in the filtering area through statistical tests between distributions. This proposal uses the complex Wishart model to describe PolSAR data, but the technique can be extended to other models. The weights of the location-variant linear filter are function of the p-values of tests which verify the hypothesis that two samples come from the same distribution and, therefore, can be used to compute a local mean. The test stems from the family of (h-phi) divergences which originated in Information Theory. This novel technique was compared with the Boxcar, Refined Lee and IDAN filters. Image quality assessment methods on simulated and real data are employed to validate the performance of this approach. We show that the proposed filter also enhances the polarimetric entropy and preserves the scattering information of the targets.


Polarimetric SAR Image Segmentation with B-Splines and a New Statistical Model

arXiv.org Machine Learning

We present an approach for polarimetric Synthetic Aperture Radar (SAR) image region boundary detection based on the use of B-Spline active contours and a new model for polarimetric SAR data: the GHP distribution. In order to detect the boundary of a region, initial B-Spline curves are specified, either automatically or manually, and the proposed algorithm uses a deformable contours technique to find the boundary. In doing this, the parameters of the polarimetric GHP model for the data are estimated, in order to find the transition points between the region being segmented and the surrounding area. This is a local algorithm since it works only on the region to be segmented. Results of its performance are presented.


Hypothesis Testing in Speckled Data with Stochastic Distances

arXiv.org Machine Learning

Images obtained with coherent illumination, as is the case of sonar, ultrasound-B, laser and Synthetic Aperture Radar -- SAR, are affected by speckle noise which reduces the ability to extract information from the data. Specialized techniques are required to deal with such imagery, which has been modeled by the G0 distribution and under which regions with different degrees of roughness and mean brightness can be characterized by two parameters; a third parameter, the number of looks, is related to the overall signal-to-noise ratio. Assessing distances between samples is an important step in image analysis; they provide grounds of the separability and, therefore, of the performance of classification procedures. This work derives and compares eight stochastic distances and assesses the performance of hypothesis tests that employ them and maximum likelihood estimation. We conclude that tests based on the triangular distance have the closest empirical size to the theoretical one, while those based on the arithmetic-geometric distances have the best power. Since the power of tests based on the triangular distance is close to optimum, we conclude that the safest choice is using this distance for hypothesis testing, even when compared with classical distances as Kullback-Leibler and Bhattacharyya.


Nonparametric Edge Detection in Speckled Imagery

arXiv.org Machine Learning

We address the issue of edge detection in Synthetic Aperture Radar imagery. In particular, we propose nonparametric methods for edge detection, and numerically compare them to an alternative method that has been recently proposed in the literature. Our results show that some of the proposed methods display superior results and are computationally simpler than the existing method. An application to real (not simulated) data is presented and discussed.


Polarimetric SAR Image Smoothing with Stochastic Distances

arXiv.org Machine Learning

Polarimetric Synthetic Aperture Radar (PolSAR) images are establishing as an important source of information in remote sensing applications. The most complete format this type of imaging produces consists of complex-valued Hermitian matrices in every image coordinate and, as such, their visualization is challenging. They also suffer from speckle noise which reduces the signal-to-noise ratio. Smoothing techniques have been proposed in the literature aiming at preserving different features and, analogously, projections from the cone of Hermitian positive matrices to different color representation spaces are used for enhancing certain characteristics. In this work we propose the use of stochastic distances between models that describe this type of data in a Nagao-Matsuyama-type of smoothing technique. The resulting images are shown to present good visualization properties (noise reduction with preservation of fine details) in all the considered visualization spaces.