Franz, Martin
Granite Embedding Models
Awasthy, Parul, Trivedi, Aashka, Li, Yulong, Bornea, Mihaela, Cox, David, Daniels, Abraham, Franz, Martin, Goodhart, Gabe, Iyer, Bhavani, Kumar, Vishwajeet, Lastras, Luis, McCarley, Scott, Murthy, Rudra, P, Vignesh, Rosenthal, Sara, Roukos, Salim, Sen, Jaydeep, Sharma, Sukriti, Sil, Avirup, Soule, Kate, Sultan, Arafat, Florian, Radu
We introduce the Granite Embedding models, a family of encoder-based embedding models designed for retrieval tasks, spanning dense-retrieval and sparse-retrieval architectures, with both English and Multilingual capabilities. This report provides the technical details of training these highly effective 12 layer embedding models, along with their efficient 6 layer distilled counterparts. Extensive evaluations show that the models, developed with techniques like retrieval oriented pretraining, contrastive finetuning, knowledge distillation, and model merging significantly outperform publicly available models of similar sizes on both internal IBM retrieval and search tasks, and have equivalent performance on widely-used information retrieval benchmarks, while being trained on high-quality data suitable for enterprise use. We publicly release all our Granite Embedding models under the Apache 2.0 license, allowing both research and commercial use at https://huggingface.co/collections/ibm-granite . Figure 1: Average performance on the Granite embedding models (in blue) vs BGE, GTE, Snowflake, E5, and Nomic models on 5 QA and IR datasets: BEIR, ClapNQ, CoIR, RedHat, and UnifiedSearch (the last 2 are internal IBM datasets). The goal of text embedding models is to convert variable length text into a fixed vector, encoding the text semantics into a multidimensional vector in such a way that semantically close texts are close in the vector space, while dissimilar texts have a low similarity. These embeddings can then be used in a variety of tasks, most commonly in retrieval applications, where the relevance of a document to a given query can be determined by the similarity of their embeddings (Dunn et al., 2017; Xiong et al., 2020; Neelakantan et al., 2022)(Zamani et al., 2018; Zhao et al., 2020), but also in document clustering (Angelov, 2020) and text classification (Sun et al., 2019). See Contributions section for full author list.
Retrieval Augmented Generation-Based Incident Resolution Recommendation System for IT Support
Isaza, Paulina Toro, Nidd, Michael, Zheutlin, Noah, Ahn, Jae-wook, Bhatt, Chidansh Amitkumar, Deng, Yu, Mahindru, Ruchi, Franz, Martin, Florian, Hans, Roukos, Salim
Clients wishing to implement generative AI in the domain of IT Support and AIOps face two critical issues: domain coverage and model size constraints due to model choice limitations. Clients might choose to not use larger proprietary models such as GPT-4 due to cost and privacy concerns and so are limited to smaller models with potentially less domain coverage that do not generalize to the client's domain. Retrieval augmented generation is a common solution that addresses both of these issues: a retrieval system first retrieves the necessary domain knowledge which a smaller generative model leverages as context for generation. We present a system developed for a client in the IT Support domain for support case solution recommendation that combines retrieval augmented generation (RAG) for answer generation with an encoder-only model for classification and a generative large language model for query generation. We cover architecture details, data collection and annotation, development journey and preliminary validations, expected final deployment process and evaluation plans, and finally lessons learned.
UDAPDR: Unsupervised Domain Adaptation via LLM Prompting and Distillation of Rerankers
Saad-Falcon, Jon, Khattab, Omar, Santhanam, Keshav, Florian, Radu, Franz, Martin, Roukos, Salim, Sil, Avirup, Sultan, Md Arafat, Potts, Christopher
Many information retrieval tasks require large labeled datasets for fine-tuning. However, such datasets are often unavailable, and their utility for real-world applications can diminish quickly due to domain shifts. To address this challenge, we develop and motivate a method for using large language models (LLMs) to generate large numbers of synthetic queries cheaply. The method begins by generating a small number of synthetic queries using an expensive LLM. After that, a much less expensive one is used to create large numbers of synthetic queries, which are used to fine-tune a family of reranker models. These rerankers are then distilled into a single efficient retriever for use in the target domain. We show that this technique Figure 1: Overview of UDAPDR. An expensive LLM boosts zero-shot accuracy in long-tail domains like GPT-3 is used to create an initial set of synthetic and achieves substantially lower latency than queries. These are incorporated into a set of prompts for standard reranking methods.
PrimeQA: The Prime Repository for State-of-the-Art Multilingual Question Answering Research and Development
Sil, Avirup, Sen, Jaydeep, Iyer, Bhavani, Franz, Martin, Fadnis, Kshitij, Bornea, Mihaela, Rosenthal, Sara, McCarley, Scott, Zhang, Rong, Kumar, Vishwajeet, Li, Yulong, Sultan, Md Arafat, Bhat, Riyaz, Florian, Radu, Roukos, Salim
The field of Question Answering (QA) has made remarkable progress in recent years, thanks to the advent of large pre-trained language models, newer realistic benchmark datasets with leaderboards, and novel algorithms for key components such as retrievers and readers. In this paper, we introduce PRIMEQA: a one-stop and open-source QA repository with an aim to democratize QA re-search and facilitate easy replication of state-of-the-art (SOTA) QA methods. PRIMEQA supports core QA functionalities like retrieval and reading comprehension as well as auxiliary capabilities such as question generation.It has been designed as an end-to-end toolkit for various use cases: building front-end applications, replicating SOTA methods on pub-lic benchmarks, and expanding pre-existing methods. PRIMEQA is available at : https://github.com/primeqa.
Moving Beyond Downstream Task Accuracy for Information Retrieval Benchmarking
Santhanam, Keshav, Saad-Falcon, Jon, Franz, Martin, Khattab, Omar, Sil, Avirup, Florian, Radu, Sultan, Md Arafat, Roukos, Salim, Zaharia, Matei, Potts, Christopher
Neural information retrieval (IR) systems have progressed rapidly in recent years, in large part due to the release of publicly available benchmarking tasks. Unfortunately, some dimensions of this progress are illusory: the majority of the popular IR benchmarks today focus exclusively on downstream task accuracy and thus conceal the costs incurred by systems that trade away efficiency for quality. Latency, hardware cost, and other efficiency considerations are paramount to the deployment of IR systems in user-facing settings. We propose that IR benchmarks structure their evaluation methodology to include not only metrics of accuracy, but also efficiency considerations such as a query latency and the corresponding cost budget for a reproducible hardware setting. For the popular IR benchmarks MS MARCO and XOR-TyDi, we show how the best choice of IR system varies according to how these efficiency considerations are chosen and weighed. We hope that future benchmarks will adopt these guidelines toward more holistic IR evaluation.
Learning Cross-Lingual IR from an English Retriever
Li, Yulong, Franz, Martin, Sultan, Md Arafat, Iyer, Bhavani, Lee, Young-Suk, Sil, Avirup
We present a new cross-lingual information retrieval (CLIR) model trained using multi-stage knowledge distillation (KD). The teacher and the student are heterogeneous systems-the former is a pipeline that relies on machine translation and monolingual IR, while the latter executes a single CLIR operation. We show that the student can learn both multilingual representations and CLIR by optimizing two corresponding KD objectives. Learning multilingual representations from an English-only retriever is accomplished using a novel cross-lingual alignment algorithm that greedily re-positions the teacher tokens for alignment. Evaluation on the XOR-TyDi benchmark shows that the proposed model is far more effective than the existing approach of fine-tuning with cross-lingual labeled IR data, with a gain in accuracy of 25.4 Recall@5kt.
Towards Robust Neural Retrieval Models with Synthetic Pre-Training
Reddy, Revanth Gangi, Yadav, Vikas, Sultan, Md Arafat, Franz, Martin, Castelli, Vittorio, Ji, Heng, Sil, Avirup
Recent work has shown that commonly available machine reading comprehension (MRC) datasets can be used to train high-performance neural information retrieval (IR) systems. However, the evaluation of neural IR has so far been limited to standard supervised learning settings, where they have outperformed traditional term matching baselines. We conduct in-domain and out-of-domain evaluations of neural IR, and seek to improve its robustness across different scenarios, including zero-shot settings. We show that synthetic training examples generated using a sequence-to-sequence generator can be effective towards this goal: in our experiments, pre-training with synthetic examples improves retrieval performance in both in-domain and out-of-domain evaluation on five different test sets.