Goto

Collaborating Authors

 Frantzen, Florian


Topological Trajectory Classification and Landmark Inference on Simplicial Complexes

arXiv.org Artificial Intelligence

We consider the problem of classifying trajectories on a discrete or discretised 2-dimensional manifold modelled by a simplicial complex. Previous works have proposed to project the trajectories into the harmonic eigenspace of the Hodge Laplacian, and then cluster the resulting embeddings. However, if the considered space has vanishing homology (i.e., no "holes"), then the harmonic space of the 1-Hodge Laplacian is trivial and thus the approach fails. Here we propose to view this issue akin to a sensor placement problem and present an algorithm that aims to learn "optimal holes" to distinguish a set of given trajectory classes. Specifically, given a set of labelled trajectories, which we interpret as edge-flows on the underlying simplicial complex, we search for 2-simplices whose deletion results in an optimal separation of the trajectory labels according to the corresponding spectral embedding of the trajectories into the harmonic space. Finally, we generalise this approach to the unsupervised setting.


Learning From Simplicial Data Based on Random Walks and 1D Convolutions

arXiv.org Artificial Intelligence

Triggered by limitations of graph-based deep learning methods in terms of computational expressivity and model flexibility, recent years have seen a surge of interest in computational models that operate on higher-order topological domains such as hypergraphs and simplicial complexes. While the increased expressivity of these models can indeed lead to a better classification performance and a more faithful representation of the underlying system, the computational cost of these higherorder models can increase dramatically. To this end, we here explore a simplicial complex neural network learning architecture based on random walks and fast 1D convolutions (SCRaWl), in which we can adjust the increase in computational cost by varying the length and number of random walks considered while accounting for higher-order relationships. Importantly, due to the random walk-based design, the expressivity of the proposed architecture is provably incomparable to that of existing message-passing simplicial neural networks. We empirically evaluate SCRaWl on real-world datasets and show that it outperforms other simplicial neural networks. In recent years, there has been a strong interest in extending graph-based learning methods, in particular graph neural networks, to higher-order domains such as hypergraphs and simplicial complexes. These higher-order abstractions offer a more comprehensive representation of relationships among entities than traditional graph-based approaches, which are based on pairwise interactions. Accordingly, it has been shown that we can achieve performance gains in various learning and prediction tasks for complex systems by employing such higher-order models (Benson et al., 2018; Schaub et al., 2021; Battiston & Petri, 2022). For instance, in the context of graph classification, it is well known that standard message-passing graph neural networks with anonymous inputs are limited in their expressiveness by the one-dimensional Weisfeiler-Leman graph isomorphism test (Morris et al., 2019; Xu et al., 2019; Morris et al., 2023) and thus cannot distinguish certain non-isomorphic graphs.


TopoX: A Suite of Python Packages for Machine Learning on Topological Domains

arXiv.org Artificial Intelligence

We introduce TopoX, a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains that extend graphs: hypergraphs, simplicial, cellular, path and combinatorial complexes. TopoX consists of three packages: TopoNetX facilitates constructing and computing on these domains, including working with nodes, edges and higher-order cells; TopoEmbedX provides methods to embed topological domains into vector spaces, akin to popular graph-based embedding algorithms such as node2vec; TopoModelX is built on top of PyTorch and offers a comprehensive toolbox of higher-order message passing functions for neural networks on topological domains. The extensively documented and unit-tested source code of TopoX is available under MIT license at https://github.com/pyt-team.


The Effects of Randomness on the Stability of Node Embeddings

arXiv.org Machine Learning

We systematically evaluate the (in-)stability of state-of-the-art node embedding algorithms due to randomness, i.e., the random variation of their outcomes given identical algorithms and graphs. We apply five node embeddings algorithms---HOPE, LINE, node2vec, SDNE, and GraphSAGE---to synthetic and empirical graphs and assess their stability under randomness with respect to (i) the geometry of embedding spaces as well as (ii) their performance in downstream tasks. We find significant instabilities in the geometry of embedding spaces independent of the centrality of a node. In the evaluation of downstream tasks, we find that the accuracy of node classification seems to be unaffected by random seeding while the actual classification of nodes can vary significantly. This suggests that instability effects need to be taken into account when working with node embeddings. Our work is relevant for researchers and engineers interested in the effectiveness, reliability, and reproducibility of node embedding approaches.