Frank, Anette
Weisfeiler-Leman in the BAMBOO: Novel AMR Graph Metrics and a Benchmark for AMR Graph Similarity
Opitz, Juri, Daza, Angel, Frank, Anette
Several metrics have been proposed for assessing the similarity of (abstract) meaning representations (AMRs), but little is known about how they relate to human similarity ratings. Moreover, the current metrics have complementary strengths and weaknesses: some emphasize speed, while others make the alignment of graph structures explicit, at the price of a costly alignment step. In this work we propose new Weisfeiler-Leman AMR similarity metrics that unify the strengths of previous metrics, while mitigating their weaknesses. Specifically, our new metrics are able to match contextualized substructures and induce n:m alignments between their nodes. Furthermore, we introduce a Benchmark for AMR Metrics based on Overt Objectives (BAMBOO), the first benchmark to support empirical assessment of graph-based MR similarity metrics. BAMBOO maximizes the interpretability of results by defining multiple overt objectives that range from sentence similarity objectives to stress tests that probe a metric's robustness against meaning-altering and meaning-preserving graph transformations. We show the benefits of BAMBOO by profiling previous metrics and our own metrics. Results indicate that our novel metrics may serve as a strong baseline for future work.
Translate, then Parse! A strong baseline for Cross-Lingual AMR Parsing
Uhrig, Sarah, Garcia, Yoalli Rezepka, Opitz, Juri, Frank, Anette
In cross-lingual Abstract Meaning Representation (AMR) parsing, researchers develop models that project sentences from various languages onto their AMRs to capture their essential semantic structures: given a sentence in any language, we aim to capture its core semantic content through concepts connected by manifold types of semantic relations. Methods typically leverage large silver training data to learn a single model that is able to project non-English sentences to AMRs. However, we find that a simple baseline tends to be over-looked: translating the sentences to English and projecting their AMR with a monolingual AMR parser (translate+parse,T+P). In this paper, we revisit this simple two-step base-line, and enhance it with a strong NMT system and a strong AMR parser. Our experiments show that T+P outperforms a recent state-of-the-art system across all tested languages: German, Italian, Spanish and Mandarin with +14.6, +12.6, +14.3 and +16.0 Smatch points.
Generating Hypothetical Events for Abductive Inference
Paul, Debjit, Frank, Anette
Abductive reasoning starts from some observations and aims at finding the most plausible explanation for these observations. To perform abduction, humans often make use of temporal and causal inferences, and knowledge about how some hypothetical situation can result in different outcomes. This work offers the first study of how such knowledge impacts the Abductive NLI task -- which consists in choosing the more likely explanation for given observations. We train a specialized language model LMI that is tasked to generate what could happen next from a hypothetical scenario that evolves from a given event. We then propose a multi-task model MTL to solve the Abductive NLI task, which predicts a plausible explanation by a) considering different possible events emerging from candidate hypotheses -- events generated by LMI -- and b) selecting the one that is most similar to the observed outcome. We show that our MTL model improves over prior vanilla pre-trained LMs fine-tuned on Abductive NLI. Our manual evaluation and analysis suggest that learning about possible next events from different hypothetical scenarios supports abductive inference.
COINS: Dynamically Generating COntextualized Inference Rules for Narrative Story Completion
Paul, Debjit, Frank, Anette
Despite recent successes of large pre-trained language models in solving reasoning tasks, their inference capabilities remain opaque. We posit that such models can be made more interpretable by explicitly generating interim inference rules, and using them to guide the generation of task-specific textual outputs. In this paper we present COINS, a recursive inference framework that i) iteratively reads context sentences, ii) dynamically generates contextualized inference rules, encodes them, and iii) uses them to guide task-specific output generation. We apply COINS to a Narrative Story Completion task that asks a model to complete a story with missing sentences, to produce a coherent story with plausible logical connections, causal relationships, and temporal dependencies. By modularizing inference and sentence generation steps in a recurrent model, we aim to make reasoning steps and their effects on next sentence generation transparent. Our automatic and manual evaluations show that the model generates better story sentences than SOTA baselines, especially in terms of coherence. We further demonstrate improved performance over strong pre-trained LMs in generating commonsense inference rules. The recursive nature of COINS holds the potential for controlled generation of longer sequences.
What is Multimodality?
Parcalabescu, Letitia, Trost, Nils, Frank, Anette
The last years have shown rapid developments in the field of multimodal machine learning, combining e.g., vision, text or speech. In this position paper we explain how the field uses outdated definitions of multimodality that prove unfit for the machine learning era. We propose a new task-relative definition of (multi)modality in the context of multimodal machine learning that focuses on representations and information that are relevant for a given machine learning task. With our new definition of multimodality we aim to provide a missing foundation for multimodal research, an important component of language grounding and a crucial milestone towards NLU.
A Mention-Ranking Model for Abstract Anaphora Resolution
Marasović, Ana, Born, Leo, Opitz, Juri, Frank, Anette
Resolving abstract anaphora is an important, but difficult task for text understanding. Yet, with recent advances in representation learning this task becomes a more tangible aim. A central property of abstract anaphora is that it establishes a relation between the anaphor embedded in the anaphoric sentence and its (typically non-nominal) antecedent. We propose a mention-ranking model that learns how abstract anaphors relate to their antecedents with an LSTM-Siamese Net. We overcome the lack of training data by generating artificial anaphoric sentence--antecedent pairs. Our model outperforms state-of-the-art results on shell noun resolution. We also report first benchmark results on an abstract anaphora subset of the ARRAU corpus. This corpus presents a greater challenge due to a mixture of nominal and pronominal anaphors and a greater range of confounders. We found model variants that outperform the baselines for nominal anaphors, without training on individual anaphor data, but still lag behind for pronominal anaphors. Our model selects syntactically plausible candidates and -- if disregarding syntax -- discriminates candidates using deeper features.