Goto

Collaborating Authors

 Francis, Anthony


VADER: Visual Affordance Detection and Error Recovery for Multi Robot Human Collaboration

arXiv.org Artificial Intelligence

Robots today can exploit the rich world knowledge of large language models to chain simple behavioral skills into long-horizon tasks. However, robots often get interrupted during long-horizon tasks due to primitive skill failures and dynamic environments. We propose VADER, a plan, execute, detect framework with seeking help as a new skill that enables robots to recover and complete long-horizon tasks with the help of humans or other robots. VADER leverages visual question answering (VQA) modules to detect visual affordances and recognize execution errors. It then generates prompts for a language model planner (LMP) which decides when to seek help from another robot or human to recover from errors in long-horizon task execution. We show the effectiveness of VADER with two long-horizon robotic tasks. Our pilot study showed that VADER is capable of performing complex long-horizon tasks by asking for help from another robot to clear a table. Our user study showed that VADER is capable of performing complex long-horizon tasks by asking for help from a human to clear a path. We gathered feedback from people (N=19) about the performance of the VADER performance vs. a robot that did not ask for help. https://google-vader.github.io/


Principles and Guidelines for Evaluating Social Robot Navigation Algorithms

arXiv.org Artificial Intelligence

A major challenge to deploying robots widely is navigation in human-populated environments, commonly referred to as social robot navigation. While the field of social navigation has advanced tremendously in recent years, the fair evaluation of algorithms that tackle social navigation remains hard because it involves not just robotic agents moving in static environments but also dynamic human agents and their perceptions of the appropriateness of robot behavior. In contrast, clear, repeatable, and accessible benchmarks have accelerated progress in fields like computer vision, natural language processing and traditional robot navigation by enabling researchers to fairly compare algorithms, revealing limitations of existing solutions and illuminating promising new directions. We believe the same approach can benefit social navigation. In this paper, we pave the road towards common, widely accessible, and repeatable benchmarking criteria to evaluate social robot navigation. Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a design of a social navigation metrics framework to make it easier to compare results from different simulators, robots and datasets.


Evolving Rewards to Automate Reinforcement Learning

arXiv.org Machine Learning

Many continuous control tasks have easily formulated objectives, yet using them directly as a reward in reinforcement learning (RL) leads to suboptimal policies. Therefore, many classical control tasks guide RL training using complex rewards, which require tedious hand-tuning. We automate the reward search with AutoRL, an evolutionary layer over standard RL that treats reward tuning as hyperparameter optimization and trains a population of RL agents to find a reward that maximizes the task objective. AutoRL, evaluated on four Mujoco continuous control tasks over two RL algorithms, shows improvements over baselines, with the the biggest uplift for more complex tasks. The video can be found at: \url{https://youtu.be/svdaOFfQyC8}.


Long-Range Indoor Navigation with PRM-RL

arXiv.org Artificial Intelligence

Long-range indoor navigation requires guiding robots with noisy sensors and controls through cluttered environments along paths that span a variety of buildings. We achieve this with PRM-RL, a hierarchical robot navigation method in which reinforcement learning agents that map noisy sensors to robot controls learn to solve short-range obstacle avoidance tasks, and then sampling-based planners map where these agents can reliably navigate in simulation; these roadmaps and agents are then deployed on-robot, guiding the robot along the shortest path where the agents are likely to succeed. Here we use Probabilistic Roadmaps (PRMs) as the sampling-based planner and AutoRL as the reinforcement learning method in the indoor navigation context. We evaluate the method in simulation for kinematic differential drive and kinodynamic car-like robots in several environments, and on-robot for differential-drive robots at two physical sites. Our results show PRM-RL with AutoRL is more successful than several baselines, is robust to noise, and can guide robots over hundreds of meters in the face of noise and obstacles in both simulation and on-robot, including over 3.3 kilometers of physical robot navigation.


Learning Navigation Behaviors End to End

arXiv.org Artificial Intelligence

A longstanding goal of behavior-based robotics is to solve high-level navigation tasks using end to end navigation behaviors that directly map sensors to actions. Navigation behaviors, such as reaching a goal or following a path without collisions, can be learned from exploration and interaction with the environment, but are constrained by the type and quality of a robot's sensors, dynamics, and actuators. Traditional motion planning handles varied robot geometry and dynamics, but typically assumes high-quality observations. Modern vision-based navigation typically considers imperfect or partial observations, but simplifies the robot action space. With both approaches, the transition from simulation to reality can be difficult. Here, we learn two end to end navigation behaviors that avoid moving obstacles: point to point and path following. These policies receive noisy lidar observations and output robot linear and angular velocities. We train these policies in small, static environments with Shaped-DDPG, an adaptation of the Deep Deterministic Policy Gradient (DDPG) reinforcement learning method which optimizes reward and network architecture. Over 500 meters of on-robot experiments show , these policies generalize to new environments and moving obstacles, are robust to sensor, actuator, and localization noise, and can serve as robust building blocks for larger navigation tasks. The path following and point and point policies are 83% and 56% more successful than the baseline, respectively.


PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning

arXiv.org Artificial Intelligence

We present PRM-RL, a hierarchical method for long-range navigation task completion that combines sampling based path planning with reinforcement learning (RL). The RL agents learn short-range, point-to-point navigation policies that capture robot dynamics and task constraints without knowledge of the large-scale topology. Next, the sampling-based planners provide roadmaps which connect robot configurations that can be successfully navigated by the RL agent. The same RL agents are used to control the robot under the direction of the planning, enabling long-range navigation. We use the Probabilistic Roadmaps (PRMs) for the sampling-based planner. The RL agents are constructed using feature-based and deep neural net policies in continuous state and action spaces. We evaluate PRM-RL, both in simulation and on-robot, on two navigation tasks with non-trivial robot dynamics: end-to-end differential drive indoor navigation in office environments, and aerial cargo delivery in urban environments with load displacement constraints. Our results show improvement in task completion over both RL agents on their own and traditional sampling-based planners. In the indoor navigation task, PRM-RL successfully completes up to 215 m long trajectories under noisy sensor conditions, and the aerial cargo delivery completes flights over 1000 m without violating the task constraints in an environment 63 million times larger than used in training.