Goto

Collaborating Authors

 Fowlkes, Charless C.


Modular Framework for Visuomotor Language Grounding

arXiv.org Artificial Intelligence

Natural language instruction following tasks serve as a valuable test-bed for grounded language and robotics research. However, data collection for these tasks is expensive and end-to-end approaches suffer from data inefficiency. We propose the structuring of language, acting, and visual tasks into separate modules that can be trained independently. Using a Language, Action, and Vision (LAV) framework removes the dependence of action and vision modules on instruction following datasets, making them more efficient to train. We also present a preliminary evaluation of LAV on the ALFRED task for visual and interactive instruction following.


Fast Planar Correlation Clustering for Image Segmentation

arXiv.org Machine Learning

We describe a new optimization scheme for finding high-quality correlation clusterings in planar graphs that uses weighted perfect matching as a subroutine. Our method provides lower-bounds on the energy of the optimal correlation clustering that are typically fast to compute and tight in practice. We demonstrate our algorithm on the problem of image segmentation where this approach outperforms existing global optimization techniques in minimizing the objective and is competitive with the state of the art in producing high-quality segmentations.


Tightening MRF Relaxations with Planar Subproblems

arXiv.org Machine Learning

We describe a new technique for computing lower-bounds on the minimum energy configuration of a planar Markov Random Field (MRF). Our method successively adds large numbers of constraints and enforces consistency over binary projections of the original problem state space. These constraints are represented in terms of subproblems in a dual-decomposition framework that is optimized using subgradient techniques. The complete set of constraints we consider enforces cycle consistency over the original graph. In practice we find that the method converges quickly on most problems with the addition of a few subproblems and outperforms existing methods for some interesting classes of hard potentials.


Planar Cycle Covering Graphs

arXiv.org Machine Learning

We describe a new variational lower-bound on the minimum energy configuration of a planar binary Markov Random Field (MRF). Our method is based on adding auxiliary nodes to every face of a planar embedding of the graph in order to capture the effect of unary potentials. A ground state of the resulting approximation can be computed efficiently by reduction to minimum-weight perfect matching. We show that optimization of variational parameters achieves the same lower-bound as dual-decomposition into the set of all cycles of the original graph. We demonstrate that our variational optimization converges quickly and provides high-quality solutions to hard combinatorial problems 10-100x faster than competing algorithms that optimize the same bound.


Bilinear classifiers for visual recognition

Neural Information Processing Systems

We describe an algorithm for learning bilinear SVMs. Bilinear classifiers are a discriminative variant of bilinear models, which capture the dependence of data on multiple factors. Such models are particularly appropriate for visual data that is better represented as a matrix or tensor, rather than a vector. Matrix encodings allow for more natural regularization through rank restriction. For example, a rank-one scanning-window classifier yields a separable filter. Low-rank models have fewer parameters and so are easier to regularize and faster to score at run-time. We learn low-rank models with bilinear classifiers. We also use bilinear classifiers for transfer learning by sharing linear factors between different classification tasks. Bilinear classifiers are trained with biconvex programs. Such programs are optimized with coordinate descent, where each coordinate step requires solving a convex program - in our case, we use a standard off-the-shelf SVM solver. We demonstrate bilinear SVMs on difficult problems of people detection in video sequences and action classification of video sequences, achieving state-of-the-art results in both.



Learning to Detect Natural Image Boundaries Using Brightness and Texture

Neural Information Processing Systems

The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness and texture associated with natural boundaries. In order to combine the information from these features in an optimal way, a classifier is trained using human labeled images as ground truth. We present precision-recall curves showing that the resulting detector outperforms existing approaches.


Learning to Detect Natural Image Boundaries Using Brightness and Texture

Neural Information Processing Systems

The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness and texture associated with natural boundaries. In order to combine the information from these features in an optimal way, a classifier is trained using human labeled images as ground truth. We present precision-recall curves showing that the resulting detector outperforms existing approaches.


Learning to Detect Natural Image Boundaries Using Brightness and Texture

Neural Information Processing Systems

The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness and texture associated with natural boundaries. In order to combine the information from these features in an optimal way, a classifier is trained using human labeled images as ground truth. We present precision-recall curves showing that the resulting detector outperforms existing approaches.