Goto

Collaborating Authors

 Fouque, Jean-Pierre


Analysis of Multiscale Reinforcement Q-Learning Algorithms for Mean Field Control Games

arXiv.org Artificial Intelligence

Mean Field Control Games (MFCG), introduced in [Angiuli et al., 2022a], represent competitive games between a large number of large collaborative groups of agents in the infinite limit of number and size of groups. In this paper, we prove the convergence of a three-timescale Reinforcement Q-Learning (RL) algorithm to solve MFCG in a model-free approach from the point of view of representative agents. Our analysis uses a Q-table for finite state and action spaces updated at each discrete time-step over an infinite horizon. In [Angiuli et al., 2023], we proved convergence of two-timescale algorithms for MFG and MFC separately highlighting the need to follow multiple population distributions in the MFC case. Here, we integrate this feature for MFCG as well as three rates of update decreasing to zero in the proper ratios. Our technique of proof uses a generalization to three timescales of the two-timescale analysis in [Borkar, 1997]. We give a simple example satisfying the various hypothesis made in the proof of convergence and illustrating the performance of the algorithm.


Deep Reinforcement Learning for Infinite Horizon Mean Field Problems in Continuous Spaces

arXiv.org Artificial Intelligence

We present the development and analysis of a reinforcement learning (RL) algorithm designed to solve continuous-space mean field game (MFG) and mean field control (MFC) problems in a unified manner. The proposed approach pairs the actor-critic (AC) paradigm with a representation of the mean field distribution via a parameterized score function, which can be efficiently updated in an online fashion, and uses Langevin dynamics to obtain samples from the resulting distribution. The AC agent and the score function are updated iteratively to converge, either to the MFG equilibrium or the MFC optimum for a given mean field problem, depending on the choice of learning rates. A straightforward modification of the algorithm allows us to solve mixed mean field control games (MFCGs). The performance of our algorithm is evaluated using linear-quadratic benchmarks in the asymptotic infinite horizon framework.


Multivariate Systemic Risk Measures and Computation by Deep Learning Algorithms

arXiv.org Artificial Intelligence

In this work we propose deep learning-based algorithms for the computation of systemic shortfall risk measures defined via multivariate utility functions. We discuss the key related theoretical aspects, with a particular focus on the fairness properties of primal optima and associated risk allocations. The algorithms we provide allow for learning primal optimizers, optima for the dual representation and corresponding fair risk allocations. We test our algorithms by comparison to a benchmark model, based on a paired exponential utility function, for which we can provide explicit formulas. We also show evidence of convergence in a case for which explicit formulas are not available.