Goto

Collaborating Authors

 Foti, Nick


Reducing Reparameterization Gradient Variance

Neural Information Processing Systems

Optimization with noisy gradients has become ubiquitous in statistics and machine learning. Reparameterization gradients, or gradient estimates computed via the ``reparameterization trick,'' represent a class of noisy gradients often used in Monte Carlo variational inference (MCVI). However, when these gradient estimators are too noisy, the optimization procedure can be slow or fail to converge. One way to reduce noise is to generate more samples for the gradient estimate, but this can be computationally expensive. Instead, we view the noisy gradient as a random variable, and form an inexpensive approximation of the generating procedure for the gradient sample. This approximation has high correlation with the noisy gradient by construction, making it a useful control variate for variance reduction. We demonstrate our approach on a non-conjugate hierarchical model and a Bayesian neural net where our method attained orders of magnitude (20-2{,}000$\times$) reduction in gradient variance resulting in faster and more stable optimization.


Stochastic variational inference for hidden Markov models

Neural Information Processing Systems

Variational inference algorithms have proven successful for Bayesian analysis in large data settings, with recent advances using stochastic variational inference (SVI). However, such methods have largely been studied in independent or exchangeable data settings. We develop an SVI algorithm to learn the parameters of hidden Markov models (HMMs) in a time-dependent data setting. The challenge in applying stochastic optimization in this setting arises from dependencies in the chain, which must be broken to consider minibatches of observations. We propose an algorithm that harnesses the memory decay of the chain to adaptively bound errors arising from edge effects. We demonstrate the effectiveness of our algorithm on synthetic experiments and a large genomics dataset where a batch algorithm is computationally infeasible.


Slice sampling normalized kernel-weighted completely random measure mixture models

Neural Information Processing Systems

A number of dependent nonparametric processes have been proposed to model non-stationary data with unknown latent dimensionality. However, the inference algorithms are often slow and unwieldy, and are in general highly specific to a given model formulation. In this paper, we describe a wide class of nonparametric processes, including several existing models, and present a slice sampler that allows efficient inference across this class of models.