Foster, Dean P.
On the Complexity of Multi-Agent Decision Making: From Learning in Games to Partial Monitoring
Foster, Dylan J., Foster, Dean P., Golowich, Noah, Rakhlin, Alexander
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees, and how these considerations change as we move from few to many agents. We study this question in a general framework for interactive decision making with multiple agents, encompassing Markov games with function approximation and normal-form games with bandit feedback. We focus on equilibrium computation, in which a centralized learning algorithm aims to compute an equilibrium by controlling multiple agents that interact with an unknown environment. Our main contributions are: - We provide upper and lower bounds on the optimal sample complexity for multi-agent decision making based on a multi-agent generalization of the Decision-Estimation Coefficient, a complexity measure introduced by Foster et al. (2021) in the single-agent counterpart to our setting. Compared to the best results for the single-agent setting, our bounds have additional gaps. We show that no "reasonable" complexity measure can close these gaps, highlighting a striking separation between single and multiple agents. - We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making, but with hidden (unobserved) rewards, a framework that subsumes variants of the partial monitoring problem. As a consequence, we characterize the statistical complexity for hidden-reward interactive decision making to the best extent possible. Building on this development, we provide several new structural results, including 1) conditions under which the statistical complexity of multi-agent decision making can be reduced to that of single-agent, and 2) conditions under which the so-called curse of multiple agents can be avoided.
Deep Inventory Management
Madeka, Dhruv, Torkkola, Kari, Eisenach, Carson, Luo, Anna, Foster, Dean P., Kakade, Sham M.
This work provides a Deep Reinforcement Learning approach to solving a periodic review inventory control system with stochastic vendor lead times, lost sales, correlated demand, and price matching. While this dynamic program has historically been considered intractable, our results show that several policy learning approaches are competitive with or outperform classical methods. In order to train these algorithms, we develop novel techniques to convert historical data into a simulator. On the theoretical side, we present learnability results on a subclass of inventory control problems, where we provide a provable reduction of the reinforcement learning problem to that of supervised learning. On the algorithmic side, we present a model-based reinforcement learning procedure (Direct Backprop) to solve the periodic review inventory control problem by constructing a differentiable simulator. Under a variety of metrics Direct Backprop outperforms model-free RL and newsvendor baselines, in both simulations and real-world deployments.
Linear Reinforcement Learning with Ball Structure Action Space
Jia, Zeyu, Jia, Randy, Madeka, Dhruv, Foster, Dean P.
We study the problem of Reinforcement Learning (RL) with linear function approximation, i.e. assuming the optimal action-value function is linear in a known $d$-dimensional feature mapping. Unfortunately, however, based on only this assumption, the worst case sample complexity has been shown to be exponential, even under a generative model. Instead of making further assumptions on the MDP or value functions, we assume that our action space is such that there always exist playable actions to explore any direction of the feature space. We formalize this assumption as a ``ball structure'' action space, and show that being able to freely explore the feature space allows for efficient RL. In particular, we propose a sample-efficient RL algorithm (BallRL) that learns an $\epsilon$-optimal policy using only $\tilde{O}\left(\frac{H^5d^3}{\epsilon^3}\right)$ number of trajectories.
A Few Expert Queries Suffices for Sample-Efficient RL with Resets and Linear Value Approximation
Amortila, Philip, Jiang, Nan, Madeka, Dhruv, Foster, Dean P.
The current paper studies sample-efficient Reinforcement Learning (RL) in settings where only the optimal value function is assumed to be linearly-realizable. It has recently been understood that, even under this seemingly strong assumption and access to a generative model, worst-case sample complexities can be prohibitively (i.e., exponentially) large. We investigate the setting where the learner additionally has access to interactive demonstrations from an expert policy, and we present a statistically and computationally efficient algorithm (Delphi) for blending exploration with expert queries. In particular, Delphi requires $\tilde{\mathcal{O}}(d)$ expert queries and a $\texttt{poly}(d,H,|\mathcal{A}|,1/\varepsilon)$ amount of exploratory samples to provably recover an $\varepsilon$-suboptimal policy. Compared to pure RL approaches, this corresponds to an exponential improvement in sample complexity with surprisingly-little expert input. Compared to prior imitation learning (IL) approaches, our required number of expert demonstrations is independent of $H$ and logarithmic in $1/\varepsilon$, whereas all prior work required at least linear factors of both in addition to the same dependence on $d$. Towards establishing the minimal amount of expert queries needed, we show that, in the same setting, any learner whose exploration budget is polynomially-bounded (in terms of $d,H,$ and $|\mathcal{A}|$) will require at least $\tilde\Omega(\sqrt{d})$ oracle calls to recover a policy competing with the expert's value function. Under the weaker assumption that the expert's policy is linear, we show that the lower bound increases to $\tilde\Omega(d)$.
The Benefits of Implicit Regularization from SGD in Least Squares Problems
Zou, Difan, Wu, Jingfeng, Braverman, Vladimir, Gu, Quanquan, Foster, Dean P., Kakade, Sham M.
Stochastic gradient descent (SGD) exhibits strong algorithmic regularization effects in practice, which has been hypothesized to play an important role in the generalization of modern machine learning approaches. In this work, we seek to understand these issues in the simpler setting of linear regression (including both underparameterized and overparameterized regimes), where our goal is to make sharp instance-based comparisons of the implicit regularization afforded by (unregularized) average SGD with the explicit regularization of ridge regression. For a broad class of least squares problem instances (that are natural in high-dimensional settings), we show: (1) for every problem instance and for every ridge parameter, (unregularized) SGD, when provided with logarithmically more samples than that provided to the ridge algorithm, generalizes no worse than the ridge solution (provided SGD uses a tuned constant stepsize); (2) conversely, there exist instances (in this wide problem class) where optimally-tuned ridge regression requires quadratically more samples than SGD in order to have the same generalization performance. Taken together, our results show that, up to the logarithmic factors, the generalization performance of SGD is always no worse than that of ridge regression in a wide range of overparameterized problems, and, in fact, could be much better for some problem instances. More generally, our results show how algorithmic regularization has important consequences even in simpler (overparameterized) convex settings.
What are the Statistical Limits of Offline RL with Linear Function Approximation?
Wang, Ruosong, Foster, Dean P., Kakade, Sham M.
Offline reinforcement learning seeks to utilize offline (observational) data to guide the learning of (causal) sequential decision making strategies. The hope is that offline reinforcement learning coupled with function approximation methods (to deal with the curse of dimensionality) can provide a means to help alleviate the excessive sample complexity burden in modern sequential decision making problems. However, the extent to which this broader approach can be effective is not well understood, where the literature largely consists of sufficient conditions. This work focuses on the basic question of what are necessary representational and distributional conditions that permit provable sample-efficient offline reinforcement learning. Perhaps surprisingly, our main result shows that even if: i) we have realizability in that the true value function of \emph{every} policy is linear in a given set of features and 2) our off-policy data has good coverage over all features (under a strong spectral condition), then any algorithm still (information-theoretically) requires a number of offline samples that is exponential in the problem horizon in order to non-trivially estimate the value of \emph{any} given policy. Our results highlight that sample-efficient offline policy evaluation is simply not possible unless significantly stronger conditions hold; such conditions include either having low distribution shift (where the offline data distribution is close to the distribution of the policy to be evaluated) or significantly stronger representational conditions (beyond realizability).
Faster Ridge Regression via the Subsampled Randomized Hadamard Transform
Lu, Yichao, Dhillon, Paramveer, Foster, Dean P., Ungar, Lyle
We propose a fast algorithm for ridge regression when the number of features is much larger than the number of observations ($p \gg n$). The standard way to solve ridge regression in this setting works in the dual space and gives a running time of $O(n 2p)$. Our algorithm (SRHT-DRR) runs in time $O(np\log(n))$ and works by preconditioning the design matrix by a Randomized Walsh-Hadamard Transform with a subsequent subsampling of features. We provide risk bounds for our SRHT-DRR algorithm in the fixed design setting and show experimental results on synthetic and real datasets. Papers published at the Neural Information Processing Systems Conference.
Coupled Recurrent Models for Polyphonic Music Composition
Thickstun, John, Harchaoui, Zaid, Foster, Dean P., Kakade, Sham M.
This work describes a novel recurrent model for music composition, which accounts for the rich statistical structure of polyphonic music. There are many ways to factor the probability distribution over musical scores; we consider the merits of various approaches and propose a new factorization that decomposes a score into a collection of concurrent, coupled time series: 'parts.' The model we propose borrows ideas from both convolutional neural models and recurrent neural models; we argue that these ideas are natural for capturing music's pitch invariances, temporal structure, and polyphony. We train generative models for homophonic and polyphonic composition on the KernScores dataset (Sapp, 2005) a collection of 2,300 musical scores comprised of around 2.8 million notes spanning time from the Renaissance to the early 20th century. While evaluation of generative models is known to be hard (Theis et al., 2016), we present careful quantitative results using a unit-adjusted cross entropy metric that is independent of how we factor the distribution over scores. We also present qualitative results using a blind discrimination test.
large scale canonical correlation analysis with iterative least squares
Lu, Yichao, Foster, Dean P.
Canonical Correlation Analysis (CCA) is a widely used statistical tool with both well established theory and favorable performance for a wide range of machine learning problems. However, computing CCA for huge datasets can be very slow since it involves implementing QR decomposition or singular value decomposition of huge matrices. In this paper we introduce L-CCA, an iterative algorithm which can compute CCA fast on huge sparse datasets. Theory on both the asymptotic convergence and finite time accuracy of L-CCA are established. The experiments also show that L-CCA outperform other fast CCA approximation schemes on two real datasets.
Large scale canonical correlation analysis with iterative least squares
Lu, Yichao, Foster, Dean P.
Canonical Correlation Analysis (CCA) is a widely used statistical tool with both well established theory and favorable performance for a wide range of machine learning problems. However, computing CCA for huge datasets can be very slow since it involves implementing QR decomposition or singular value decomposition of huge matrices. In this paper we introduce L-CCA, a iterative algorithm which can compute CCA fast on huge sparse datasets. Theory on both the asymptotic convergence and finite time accuracy of L-CCA are established. The experiments also show that L-CCA outperform other fast CCA approximation schemes on two real datasets.