Goto

Collaborating Authors

 Fokoué, Ernest


Emerging Statistical Machine Learning Techniques for Extreme Temperature Forecasting in U.S. Cities

arXiv.org Machine Learning

In this paper, we present a comprehensive analysis of extreme temperature patterns using emerging statistical machine learning techniques. Our research focuses on exploring and comparing the effectiveness of various statistical models for climate time series forecasting. The models considered include Auto-Regressive Integrated Moving Average, Exponential Smoothing, Multilayer Perceptrons, and Gaussian Processes. We apply these methods to climate time series data from five most populated U.S. cities, utilizing Python and Julia to demonstrate the role of statistical computing in understanding climate change and its impacts. Our findings highlight the differences between the statistical methods and identify Multilayer Perceptrons as the most effective approach. Additionally, we project extreme temperatures using this best-performing method, up to 2030, and examine whether the temperature changes are greater than zero, thereby testing a hypothesis.


Nonnegative Matrix Factorization with Toeplitz Penalty

arXiv.org Machine Learning

Nonnegative Matrix Factorization (NMF) is an unsupervised learning algorithm that produces a linear, parts-based approximation of a data matrix. NMF constructs a nonnegative low rank basis matrix and a nonnegative low rank matrix of weights which, when multiplied together, approximate the data matrix of interest using some cost function. The NMF algorithm can be modified to include auxiliary constraints which impose task-specific penalties or restrictions on the cost function of the matrix factorization. In this paper we propose a new NMF algorithm that makes use of non-data dependent auxiliary constraints which incorporate a Toeplitz matrix into the multiplicative updating of the basis and weight matrices. We compare the facial recognition performance of our new Toeplitz Nonnegative Matrix Factorization (TNMF) algorithm to the performance of the Zellner Nonnegative Matrix Factorization (ZNMF) algorithm which makes use of data-dependent auxiliary constraints. We also compare the facial recognition performance of the two aforementioned algorithms with the performance of several preexisting constrained NMF algorithms that have non-data-dependent penalties. The facial recognition performances are evaluated using the Cambridge ORL Database of Faces and the Yale Database of Faces.


Nonnegative Matrix Factorization with Zellner Penalty

arXiv.org Machine Learning

Nonnegative matrix factorization (NMF) is a relatively new unsupervised learning algorithm that decomposes a nonnegative data matrix into a parts-based, lower dimensional, linear representation of the data. NMF has applications in image processing, text mining, recommendation systems and a variety of other fields. Since its inception, the NMF algorithm has been modified and explored by numerous authors. One such modification involves the addition of auxiliary constraints to the objective function of the factorization. The purpose of these auxiliary constraints is to impose task-specific penalties or restrictions on the objective function. Though many auxiliary constraints have been studied, none have made use of data-dependent penalties. In this paper, we propose Zellner nonnegative matrix factorization (ZNMF), which uses data-dependent auxiliary constraints. We assess the facial recognition performance of the ZNMF algorithm and several other well-known constrained NMF algorithms using the Cambridge ORL database.


Multi-Stage Fault Warning for Large Electric Grids Using Anomaly Detection and Machine Learning

arXiv.org Machine Learning

In the monitoring of a complex electric grid, it is of paramount importance to provide operators with early warnings of anomalies detected on the network, along with a precise classification and diagnosis of the specific fault type. In this paper, we propose a novel multi-stage early warning system prototype for electric grid fault detection, classification, subgroup discovery, and visualization. In the first stage, a computationally efficient anomaly detection method based on quartiles detects the presence of a fault in real time. In the second stage, the fault is classified into one of nine pre-defined disaster scenarios. The time series data are first mapped to highly discriminative features by applying dimensionality reduction based on temporal autocorrelation. The features are then mapped through one of three classification techniques: support vector machine, random forest, and artificial neural network. Finally in the third stage, intra-class clustering based on dynamic time warping is used to characterize the fault with further granularity. Results on the Bonneville Power Administration electric grid data show that i) the proposed anomaly detector is both fast and accurate; ii) dimensionality reduction leads to dramatic improvement in classification accuracy and speed; iii) the random forest method offers the most accurate, consistent, and robust fault classification; and iv) time series within a given class naturally separate into five distinct clusters which correspond closely to the geographical distribution of electric grid buses.


A Mathematical Formalization of Hierarchical Temporal Memory's Spatial Pooler

arXiv.org Machine Learning

Hierarchical temporal memory (HTM) is an emerging machine learning algorithm, with the potential to provide a means to perform predictions on spatiotemporal data. The algorithm, inspired by the neocortex, currently does not have a comprehensive mathematical framework. This work brings together all aspects of the spatial pooler (SP), a critical learning component in HTM, under a single unifying framework. The primary learning mechanism is explored, where a maximum likelihood estimator for determining the degree of permanence update is proposed. The boosting mechanisms are studied and found to be only relevant during the initial few iterations of the network. Observations are made relating HTM to well-known algorithms such as competitive learning and attribute bagging. Methods are provided for using the SP for classification as well as dimensionality reduction. Empirical evidence verifies that given the proper parameterizations, the SP may be used for feature learning.


Prediction Error Reduction Function as a Variable Importance Score

arXiv.org Machine Learning

This paper introduces and develops a novel variable importance score function in the context of ensemble learning and demonstrates its appeal both theoretically and empirically. Our proposed score function is simple and more straightforward than its counterpart proposed in the context of random forest, and by avoiding permutations, it is by design computationally more efficient than the random forest variable importance function. Just like the random forest variable importance function, our score handles both regression and classification seamlessly. One of the distinct advantage of our proposed score is the fact that it offers a natural cut off at zero, with all the positive scores indicating importance and significance, while the negative scores are deemed indications of insignificance. An extra advantage of our proposed score lies in the fact it works very well beyond ensemble of trees and can seamlessly be used with any base learners in the random subspace learning context. Our examples, both simulated and real, demonstrate that our proposed score does compete mostly favorably with the random forest score.


Efficient Approaches to Gaussian Process Classification

Neural Information Processing Systems

The first two methods are related to mean field ideas known in Statistical Physics. The third approach is based on Bayesian online approach which was motivated by recent results in the Statistical Mechanics of Neural Networks. We present simulation results showing: 1. that the mean field Bayesian evidence may be used for hyperparameter tuning and 2. that the online approach may achieve a low training error fast. 1 Introduction Gaussian processes provide promising nonparametric Bayesian approaches to regression andclassification [2, 1].


Efficient Approaches to Gaussian Process Classification

Neural Information Processing Systems

The first two methods are related to mean field ideas known in Statistical Physics. The third approach is based on Bayesian online approach which was motivated by recent results in the Statistical Mechanics of Neural Networks. We present simulation results showing: 1. that the mean field Bayesian evidence may be used for hyperparameter tuning and 2. that the online approach may achieve a low training error fast. 1 Introduction Gaussian processes provide promising nonparametric Bayesian approaches to regression and classification [2, 1].