Fogel, Fajwel
Spectral Ranking using Seriation
Fogel, Fajwel, d'Aspremont, Alexandre, Vojnovic, Milan
We describe a seriation algorithm for ranking a set of items given pairwise comparisons between these items. Intuitively, the algorithm assigns similar rankings to items that compare similarly with all others. It does so by constructing a similarity matrix from pairwise comparisons, using seriation methods to reorder this matrix and construct a ranking. We first show that this spectral seriation algorithm recovers the true ranking when all pairwise comparisons are observed and consistent with a total order. We then show that ranking reconstruction is still exact when some pairwise comparisons are corrupted or missing, and that seriation based spectral ranking is more robust to noise than classical scoring methods. Finally, we bound the ranking error when only a random subset of the comparions are observed. An additional benefit of the seriation formulation is that it allows us to solve semi-supervised ranking problems. Experiments on both synthetic and real datasets demonstrate that seriation based spectral ranking achieves competitive and in some cases superior performance compared to classical ranking methods.
SerialRank: Spectral Ranking using Seriation
Fogel, Fajwel, d', Aspremont, Alexandre, Vojnovic, Milan
We describe a seriation algorithm for ranking a set of n items given pairwise comparisons between these items. Intuitively, the algorithm assigns similar rankings to items that compare similarly with all others. It does so by constructing a similarity matrix from pairwise comparisons, using seriation methods to reorder this matrix and construct a ranking. We first show that this spectral seriation algorithm recovers the true ranking when all pairwise comparisons are observed and consistent with a total order. We then show that ranking reconstruction is still exact even when some pairwise comparisons are corrupted or missing, and that seriation based spectral ranking is more robust to noise than other scoring methods. An additional benefit of the seriation formulation is that it allows us to solve semi-supervised ranking problems. Experiments on both synthetic and real datasets demonstrate that seriation based spectral ranking achieves competitive and in some cases superior performance compared to classical ranking methods.
Convex Relaxations for Permutation Problems
Fogel, Fajwel, Jenatton, Rodolphe, Bach, Francis, D', Aspremont, Alexandre
Seriation seeks to reconstruct a linear order between variables using unsorted similarity information. It has direct applications in archeology and shotgun gene sequencing for example. We prove the equivalence between the seriation and the combinatorial 2-sum problem (a quadratic minimization problem over permutations) over a class of similarity matrices. The seriation problem can be solved exactly by a spectral algorithm in the noiseless case and we produce a convex relaxation for the 2-sum problem to improve the robustness of solutions in a noisy setting. This relaxation also allows us to impose additional structural constraints on the solution, to solve semi-supervised seriation problems. We present numerical experiments on archeological data, Markov chains and gene sequences.