Goto

Collaborating Authors

 Florence d'Alché-Buc


A Structured Prediction Approach for Label Ranking

Neural Information Processing Systems

We propose to solve a label ranking problem as a structured output regression task. In this view, we adopt a least square surrogate loss approach that solves a supervised learning problem in two steps: a regression step in a well-chosen feature space and a pre-image (or decoding) step. We use specific feature maps/embeddings for ranking data, which convert any ranking/permutation into a vector representation. These embeddings are all well-tailored for our approach, either by resulting in consistent estimators, or by solving trivially the pre-image problem which is often the bottleneck in structured prediction. Their extension to the case of incomplete or partial rankings is also discussed. Finally, we provide empirical results on synthetic and real-world datasets showing the relevance of our method.


A Structured Prediction Approach for Label Ranking

Neural Information Processing Systems

We propose to solve a label ranking problem as a structured output regression task. In this view, we adopt a least square surrogate loss approach that solves a supervised learning problem in two steps: a regression step in a well-chosen feature space and a pre-image (or decoding) step. We use specific feature maps/embeddings for ranking data, which convert any ranking/permutation into a vector representation. These embeddings are all well-tailored for our approach, either by resulting in consistent estimators, or by solving trivially the pre-image problem which is often the bottleneck in structured prediction. Their extension to the case of incomplete or partial rankings is also discussed. Finally, we provide empirical results on synthetic and real-world datasets showing the relevance of our method.


Joint quantile regression in vector-valued RKHSs

Neural Information Processing Systems

Addressing the will to give a more complete picture than an average relationship provided by standard regression, a novel framework for estimating and predicting simultaneously several conditional quantiles is introduced. The proposed methodology leverages kernel-based multi-task learning to curb the embarrassing phenomenon of quantile crossing, with a one-step estimation procedure and no postprocessing. Moreover, this framework comes along with theoretical guarantees and an efficient coordinate descent learning algorithm. Numerical experiments on benchmark and real datasets highlight the enhancements of our approach regarding the prediction error, the crossing occurrences and the training time.