Goto

Collaborating Authors

 Flammini, Francesco


EncCluster: Scalable Functional Encryption in Federated Learning through Weight Clustering and Probabilistic Filters

arXiv.org Artificial Intelligence

Federated Learning (FL) enables model training across decentralized devices by communicating solely local model updates to an aggregation server. Although such limited data sharing makes FL more secure than centralized approached, FL remains vulnerable to inference attacks during model update transmissions. Existing secure aggregation approaches rely on differential privacy or cryptographic schemes like Functional Encryption (FE) to safeguard individual client data. However, such strategies can reduce performance or introduce unacceptable computational and communication overheads on clients running on edge devices with limited resources. In this work, we present EncCluster, a novel method that integrates model compression through weight clustering with recent decentralized FE and privacy-enhancing data encoding using probabilistic filters to deliver strong privacy guarantees in FL without affecting model performance or adding unnecessary burdens to clients. We performed a comprehensive evaluation, spanning various datasets and architectures, to demonstrate EncCluster's scalability across encryption levels. Our findings reveal that EncCluster significantly reduces communication costs - below even conventional FedAvg - and accelerates encryption by more than four times over all baselines; at the same time, it maintains high model accuracy and enhanced privacy assurances.


Experimental Evaluation of Road-Crossing Decisions by Autonomous Wheelchairs against Environmental Factors

arXiv.org Artificial Intelligence

Safe road crossing by autonomous wheelchairs can be affected by several environmental factors such as adverse weather conditions influencing the accuracy of artificial vision. Previous studies have addressed experimental evaluation of multi-sensor information fusion to support road-crossing decisions in autonomous wheelchairs. In this study, we focus on the fine-tuning of tracking performance and on its experimental evaluation against outdoor environmental factors such as fog, rain, darkness, etc. It is rather intuitive that those factors can negatively affect the tracking performance; therefore our aim is to provide an approach to quantify their effects in the reference scenario, in order to detect conditions of unacceptable accuracy. In those cases, warnings can be issued and system can be possibly reconfigured to reduce the reputation of less accurate sensors, and thus improve overall safety. Critical situations can be detected by the main sensors or by additional sensors, e.g., light sensors, rain sensors, etc. Results have been achieved by using an available laboratory dataset and by applying appropriate software filters; they show that the approach can be adopted to evaluate video tracking and event detection robustness against outdoor environmental factors in relevant operational scenarios.


Safe Road-Crossing by Autonomous Wheelchairs: a Novel Dataset and its Experimental Evaluation

arXiv.org Artificial Intelligence

Safe road-crossing by self-driving vehicles is a crucial problem to address in smart-cities. In this paper, we introduce a multi-sensor fusion approach to support road-crossing decisions in a system composed by an autonomous wheelchair and a flying drone featuring a robust sensory system made of diverse and redundant components. To that aim, we designed an analytical danger function based on explainable physical conditions evaluated by single sensors, including those using machine learning and artificial vision. As a proof-of-concept, we provide an experimental evaluation in a laboratory environment, showing the advantages of using multiple sensors, which can improve decision accuracy and effectively support safety assessment. We made the dataset available to the scientific community for further experimentation. The work has been developed in the context of an European project named REXASI-PRO, which aims to develop trustworthy artificial intelligence for social navigation of people with reduced mobility.


Obstacles in Fully Automatic Program Repair: A survey

arXiv.org Artificial Intelligence

The current article is an interdisciplinary attempt to decipher automatic program repair processes. The review is done by the manner typical to human science known as diffraction. We attempt to spot a gap in the literature of self-healing and self-repair operations and further investigate the approaches that would enable us to tackle the problems we face. As a conclusion, we suggest a shift in the current approach to automatic program repair operations in order to attain our goals. The emphasis of this review is to achieve full automation. Several obstacles are shortly mentioned in the current essay but the main shortage that is covered is the overfitting obstacle, and this particular problem is investigated in the stream that is related to full automation of the repair process.