Goto

Collaborating Authors

 Fishbach, Alon


Controlling wheelchairs by body motions: A learning framework for the adaptive remapping of space

arXiv.org Artificial Intelligence

Learning to operate a vehicle is generally accomplished by forming a new cognitive map between the body motions and extrapersonal space. Here, we consider the challenge of remapping movement-to-space representations in survivors of spinal cord injury, for the control of powered wheelchairs. Our goal is to facilitate this remapping by developing interfaces between residual body motions and navigational commands that exploit the degrees of freedom that disabled individuals are most capable to coordinate. We present a new framework for allowing spinal cord injured persons to control powered wheelchairs through signals derived from their residual mobility. The main novelty of this approach lies in substituting the more common joystick controllers of powered wheelchairs with a sensor shirt. This allows the whole upper body of the user to operate as an adaptive joystick. Considerations about learning and risks have lead us to develop a safe testing environment in 3D Virtual Reality. A Personal Augmented Reality Immersive System (PARIS) allows us to analyse learning skills and provide users with an adequate training to control a simulated wheelchair through the signals generated by body motions in a safe environment. We provide a description of the basic theory, of the development phases and of the operation of the complete system. We also present preliminary results illustrating the processing of the data and supporting of the feasibility of this approach.


A Neural Edge-Detection Model for Enhanced Auditory Sensitivity in Modulated Noise

Neural Information Processing Systems

Psychophysical data suggest that temporal modulations of stimulus amplitude envelopes play a prominent role in the perceptual segregation of concurrent sounds. In particular, the detection of an unmodulated signal can be significantly improved by adding amplitude modulation to the spectral envelope of a competing masking noise. This perceptual phenomenon is known as "Comodulation Masking Release" (CMR). Despite the obvious influence of temporal structure on the perception of complex auditory scenes, the physiological mechanisms that contribute to CMR and auditory streaming are not well known. A recent physiological study by Nelken and colleagues has demonstrated an enhanced cortical representation of auditory signals in modulated noise. Our study evaluates these CMR-like response patterns from the perspective of a hypothetical auditory edge-detection neuron. It is shown that this simple neural model for the detection of amplitude transients can reproduce not only the physiological data of Nelken et al., but also, in light of previous results, a variety of physiological and psychoacoustical phenomena that are related to the perceptual segregation of concurrent sounds.


A Neural Edge-Detection Model for Enhanced Auditory Sensitivity in Modulated Noise

Neural Information Processing Systems

Psychophysical data suggest that temporal modulations of stimulus amplitude envelopes play a prominent role in the perceptual segregation of concurrent sounds. In particular, the detection of an unmodulated signal can be significantly improved by adding amplitude modulation to the spectral envelope of a competing masking noise. This perceptual phenomenon is known as "Comodulation Masking Release" (CMR). Despite the obvious influence of temporal structure on the perception of complex auditory scenes, the physiological mechanisms that contribute to CMR and auditory streaming are not well known. A recent physiological study by Nelken and colleagues has demonstrated an enhanced cortical representation of auditory signals in modulated noise. Our study evaluates these CMR-like response patterns from the perspective of a hypothetical auditory edge-detection neuron. It is shown that this simple neural model for the detection of amplitude transients can reproduce not only the physiological data of Nelken et al., but also, in light of previous results, a variety of physiological and psychoacoustical phenomena that are related to the perceptual segregation of concurrent sounds.