Goto

Collaborating Authors

 Fiser, Jozsef


No evidence for active sparsification in the visual cortex

Neural Information Processing Systems

The proposal that cortical activity in the visual cortex is optimized for sparse neural activity is one of the most established ideas in computational neuroscience. However, direct experimental evidence for optimal sparse coding remains inconclusive, mostly due to the lack of reference values on which to judge the measured sparseness. Here we analyze neural responses to natural movies in the primary visual cortex of ferrets at different stages of development, and of rats while awake and under different levels of anesthesia. In contrast with prediction from a sparse coding model, our data shows that population and lifetime sparseness decrease with visual experience, and increase from the awake to anesthetized state. These results suggest that the representation in the primary visual cortex is not actively optimized to maximize sparseness.


No evidence for active sparsification in the visual cortex

Neural Information Processing Systems

The proposal that cortical activity in the visual cortex is optimized for sparse neural activity is one of the most established ideas in computational neuroscience. However, direct experimental evidence for optimal sparse coding remains inconclusive, mostly due to the lack of reference values on which to judge the measured sparseness. Here we analyze neural responses to natural movies in the primary visual cortex of ferrets at different stages of development, and of rats while awake and under different levels of anesthesia. In contrast with prediction from a sparse coding model, our data shows that population and lifetime sparseness decrease with visual experience, and increase from the awake to anesthetized state. These results suggest that the representation in the primary visual cortex is not actively optimized to maximize sparseness.


Bayesian model learning in human visual perception

Neural Information Processing Systems

Humans make optimal perceptual decisions in noisy and ambiguous conditions. Computations underlying such optimal behavior have been shown to rely on probabilistic inference according to generative models whose structure is usually taken to be known a priori. We argue that Bayesian model selection is ideal for inferring similar and even more complex model structures from experience. We find in experiments that humans learn subtle statistical properties of visual scenes in a completely unsupervised manner. We show that these findings are well captured by Bayesian model learning within a class of models that seek to explain observed variables by independent hidden causes.