Goto

Collaborating Authors

 Fiorellino, Simone


Topological Neural Networks over the Air

arXiv.org Artificial Intelligence

Topological neural networks (TNNs) are information processing architectures that model representations from data lying over topological spaces (e.g., simplicial or cell complexes) and allow for decentralized implementation through localized communications over different neighborhoods. Existing TNN architectures have not yet been considered in realistic communication scenarios, where channel effects typically introduce disturbances such as fading and noise. This paper aims to propose a novel TNN design, operating on regular cell complexes, that performs over-the-air computation, incorporating the wireless communication model into its architecture. Specifically, during training and inference, the proposed method considers channel impairments such as fading and noise in the topological convolutional filtering operation, which takes place over different signal orders and neighborhoods. Numerical results illustrate the architecture's robustness to channel impairments during testing and the superior performance with respect to existing architectures, which are either communication-agnostic or graph-based.


Relative Representations of Latent Spaces enable Efficient Semantic Channel Equalization

arXiv.org Artificial Intelligence

In multi-user semantic communication, language mismatche poses a significant challenge when independently trained agents interact. We present a novel semantic equalization algorithm that enables communication between agents with different languages without additional retraining. Our algorithm is based on relative representations, a framework that enables different agents employing different neural network models to have unified representation. It proceeds by projecting the latent vectors of different models into a common space defined relative to a set of data samples called \textit{anchors}, whose number equals the dimension of the resulting space. A communication between different agents translates to a communication of semantic symbols sampled from this relative space. This approach, in addition to aligning the semantic representations of different agents, allows compressing the amount of information being exchanged, by appropriately selecting the number of anchors. Eventually, we introduce a novel anchor selection strategy, which advantageously determines prototypical anchors, capturing the most relevant information for the downstream task. Our numerical results show the effectiveness of the proposed approach allowing seamless communication between agents with radically different models, including differences in terms of neural network architecture and datasets used for initial training.


TopoX: A Suite of Python Packages for Machine Learning on Topological Domains

arXiv.org Artificial Intelligence

We introduce TopoX, a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains that extend graphs: hypergraphs, simplicial, cellular, path and combinatorial complexes. TopoX consists of three packages: TopoNetX facilitates constructing and computing on these domains, including working with nodes, edges and higher-order cells; TopoEmbedX provides methods to embed topological domains into vector spaces, akin to popular graph-based embedding algorithms such as node2vec; TopoModelX is built on top of PyTorch and offers a comprehensive toolbox of higher-order message passing functions for neural networks on topological domains. The extensively documented and unit-tested source code of TopoX is available under MIT license at https://github.com/pyt-team.


ICML 2023 Topological Deep Learning Challenge : Design and Results

arXiv.org Artificial Intelligence

This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning. The competition asked participants to provide open-source implementations of topological neural networks from the literature by contributing to the python packages TopoNetX (data processing) and TopoModelX (deep learning). The challenge attracted twenty-eight qualifying submissions in its two-month duration. This paper describes the design of the challenge and summarizes its main findings.