Finlayson, Mark
TLEX: An Efficient Method for Extracting Exact Timelines from TimeML Temporal Graphs
Ocal, Mustafa, Xie, Ning, Finlayson, Mark
A timeline provides a total ordering of events and times, and is useful for a number of natural language understanding tasks. However, qualitative temporal graphs that can be derived directly from text -- such as TimeML annotations -- usually explicitly reveal only partial orderings of events and times. In this work, we apply prior work on solving point algebra problems to the task of extracting timelines from TimeML annotated texts, and develop an exact, end-to-end solution which we call TLEX (TimeLine EXtraction). TLEX transforms TimeML annotations into a collection of timelines arranged in a trunk-and-branch structure. Like what has been done in prior work, TLEX checks the consistency of the temporal graph and solves it; however, it adds two novel functionalities. First, it identifies specific relations involved in an inconsistency (which could then be manually corrected) and, second, TLEX performs a novel identification of sections of the timelines that have indeterminate order, information critical for downstream tasks such as aligning events from different timelines. We provide detailed descriptions and analysis of the algorithmic components in TLEX, and conduct experimental evaluations by applying TLEX to 385 TimeML annotated texts from four corpora. We show that 123 of the texts are inconsistent, 181 of them have more than one ``real world'' or main timeline, and there are 2,541 indeterminate sections across all four corpora. A sampling evaluation showed that TLEX is 98--100% accurate with 95% confidence along five dimensions: the ordering of time-points, the number of main timelines, the placement of time-points on main versus subordinate timelines, the connecting point of branch timelines, and the location of the indeterminate sections. We provide a reference implementation of TLEX, the extracted timelines for all texts, and the manual corrections of the inconsistent texts.
Reports of the AAAI 2010 Fall Symposia
Azevedo, Roger (McGill University) | Biswas, Gautam (Vanderbilt University) | Bohus, Dan (Microsoft Research) | Carmichael, Ted (University of North Carolina at Charlotte) | Finlayson, Mark (Massachusetts Institute of Technology) | Hadzikadic, Mirsad (University of North Carolina at Charlotte) | Havasi, Catherine (Massachusetts Institute of Technology) | Horvitz, Eric (Microsoft Research) | Kanda, Takayuki (ATR Intelligent Robotics and Communications Laboratories) | Koyejo, Oluwasanmi (University of Texas at Austin) | Lawless, William (Paine College) | Lenat, Doug (Cycorp) | Meneguzzi, Felipe (Carnegie Mellon University) | Mutlu, Bilge (University of Wisconsin, Madison) | Oh, Jean (Carnegie Mellon University) | Pirrone, Roberto (University of Palermo) | Raux, Antoine (Honda Research Institute USA) | Sofge, Donald (Naval Research Laboratory) | Sukthankar, Gita (University of Central Florida) | Durme, Benjamin Van (Johns Hopkins University)
The Association for the Advancement of Artificial Intelligence was pleased to present the 2010 Fall Symposium Series, held Thursday through Saturday, November 11-13, at the Westin Arlington Gateway in Arlington, Virginia. The titles of the eight symposia are as follows: (1) Cognitive and Metacognitive Educational Systems; (2) Commonsense Knowledge; (3) Complex Adaptive Systems: Resilience, Robustness, and Evolvability; (4) Computational Models of Narrative; (5) Dialog with Robots; (6) Manifold Learning and Its Applications; (7) Proactive Assistant Agents; and (8) Quantum Informatics for Cognitive, Social, and Semantic Processes. The highlights of each symposium are presented in this report.
Reports of the AAAI 2010 Fall Symposia
Azevedo, Roger (McGill University) | Biswas, Gautam (Vanderbilt University) | Bohus, Dan (Microsoft Research) | Carmichael, Ted (University of North Carolina at Charlotte) | Finlayson, Mark (Massachusetts Institute of Technology) | Hadzikadic, Mirsad (University of North Carolina at Charlotte) | Havasi, Catherine (Massachusetts Institute of Technology) | Horvitz, Eric (Microsoft Research) | Kanda, Takayuki (ATR Intelligent Robotics and Communications Laboratories) | Koyejo, Oluwasanmi (University of Texas at Austin) | Lawless, William (Paine College) | Lenat, Doug (Cycorp) | Meneguzzi, Felipe (Carnegie Mellon University) | Mutlu, Bilge (University of Wisconsin, Madison) | Oh, Jean (Carnegie Mellon University) | Pirrone, Roberto (University of Palermo) | Raux, Antoine (Honda Research Institute USA) | Sofge, Donald (Naval Research Laboratory) | Sukthankar, Gita (University of Central Florida) | Durme, Benjamin Van (Johns Hopkins University)
The Association for the Advancement of Artificial Intelligence was pleased to present the 2010 Fall Symposium Series, held Thursday through Saturday, November 11-13, at the Westin Arlington Gateway in Arlington, Virginia. The titles of the eight symposia are as follows: (1) Cognitive and Metacognitive Educational Systems; (2) Commonsense Knowledge; (3) Complex Adaptive Systems: Resilience, Robustness, and Evolvability; (4) Computational Models of Narrative; (5) Dialog with Robots; (6) Manifold Learning and Its Applications; (7) Proactive Assistant Agents ; and (8) Quantum Informatics for Cognitive, Social, and Semantic Processes. The highlights of each symposium are presented in this report.