Not enough data to create a plot.
Try a different view from the menu above.
Finlay, James R.
Adaptive Insurance Reserving with CVaR-Constrained Reinforcement Learning under Macroeconomic Regimes
Dong, Stella C., Finlay, James R.
This paper proposes a reinforcement learning (RL) framework for insurance reserving that integrates tail-risk sensitivity, macroeconomic regime modeling, and regulatory compliance. The reserving problem is formulated as a finite-horizon Markov Decision Process (MDP), in which reserve adjustments are optimized using Proximal Policy Optimization (PPO) subject to Conditional Value-at-Risk (CVaR) constraints. To enhance policy robustness across varying economic conditions, the agent is trained using a regime-aware curriculum that progressively increases volatility exposure. The reward structure penalizes reserve shortfall, capital inefficiency, and solvency floor violations, with design elements informed by Solvency II and Own Risk and Solvency Assessment (ORSA) frameworks. Empirical evaluations on two industry datasets--Workers' Compensation, and Other Liability--demonstrate that the RL-CVaR agent achieves superior performance relative to classical reserving methods across multiple criteria, including tail-risk control (CVaR$_{0.95}$), capital efficiency, and regulatory violation rate. The framework also accommodates fixed-shock stress testing and regime-stratified analysis, providing a principled and extensible approach to reserving under uncertainty.
A Hybrid Framework for Reinsurance Optimization: Integrating Generative Models and Reinforcement Learning
Dong, Stella C., Finlay, James R.
Reinsurance optimization is critical for insurers to manage risk exposure, ensure financial stability, and maintain solvency. Traditional approaches often struggle with dynamic claim distributions, high-dimensional constraints, and evolving market conditions. This paper introduces a novel hybrid framework that integrates {Generative Models}, specifically Variational Autoencoders (VAEs), with {Reinforcement Learning (RL)} using Proximal Policy Optimization (PPO). The framework enables dynamic and scalable optimization of reinsurance strategies by combining the generative modeling of complex claim distributions with the adaptive decision-making capabilities of reinforcement learning. The VAE component generates synthetic claims, including rare and catastrophic events, addressing data scarcity and variability, while the PPO algorithm dynamically adjusts reinsurance parameters to maximize surplus and minimize ruin probability. The framework's performance is validated through extensive experiments, including out-of-sample testing, stress-testing scenarios (e.g., pandemic impacts, catastrophic events), and scalability analysis across portfolio sizes. Results demonstrate its superior adaptability, scalability, and robustness compared to traditional optimization techniques, achieving higher final surpluses and computational efficiency. Key contributions include the development of a hybrid approach for high-dimensional optimization, dynamic reinsurance parameterization, and validation against stochastic claim distributions. The proposed framework offers a transformative solution for modern reinsurance challenges, with potential applications in multi-line insurance operations, catastrophe modeling, and risk-sharing strategy design.