Filippova, Anastasiia
Time-series attribution maps with regularized contrastive learning
Schneider, Steffen, Laiz, Rodrigo González, Filippova, Anastasiia, Frey, Markus, Mathis, Mackenzie Weygandt
Gradient-based attribution methods aim to explain decisions of deep learning models but so far lack identifiability guarantees. Here, we propose a method to generate attribution maps with identifiability guarantees by developing a regularized contrastive learning algorithm trained on time-series data plus a new attribution method called Inverted Neuron Gradient (collectively named xCEBRA). We show theoretically that xCEBRA has favorable properties for identifying the Jacobian matrix of the data generating process. Empirically, we demonstrate robust approximation of zero vs. non-zero entries in the ground-truth attribution map on synthetic datasets, and significant improvements across previous attribution methods based on feature ablation, Shapley values, and other gradient-based methods. Our work constitutes a first example of identifiable inference of time-series attribution maps and opens avenues to a better understanding of time-series data, such as for neural dynamics and decision-processes within neural networks.
No Need to Talk: Asynchronous Mixture of Language Models
Filippova, Anastasiia, Katharopoulos, Angelos, Grangier, David, Collobert, Ronan
We introduce SmallTalk LM, an innovative method for training a mixture of language models in an almost asynchronous manner. Each model of the mixture specializes in distinct parts of the data distribution, without the need of high-bandwidth communication between the nodes training each model. At inference, a lightweight router directs a given sequence to a single expert, according to a short prefix. This inference scheme naturally uses a fraction of the parameters from the overall mixture model. Our experiments on language modeling demonstrate tha SmallTalk LM achieves significantly lower perplexity than dense model baselines for the same total training FLOPs and an almost identical inference cost. Finally, in our downstream evaluations we outperform the dense baseline on $75\%$ of the tasks.
SuperAnimal pretrained pose estimation models for behavioral analysis
Ye, Shaokai, Filippova, Anastasiia, Lauer, Jessy, Schneider, Steffen, Vidal, Maxime, Qiu, Tian, Mathis, Alexander, Mathis, Mackenzie Weygandt
Quantification of behavior is critical in applications ranging from neuroscience, veterinary medicine and animal conservation efforts. A common key step for behavioral analysis is first extracting relevant keypoints on animals, known as pose estimation. However, reliable inference of poses currently requires domain knowledge and manual labeling effort to build supervised models. We present a series of technical innovations that enable a new method, collectively called SuperAnimal, to develop unified foundation models that can be used on over 45 species, without additional human labels. Concretely, we introduce a method to unify the keypoint space across differently labeled datasets (via our generalized data converter) and for training these diverse datasets in a manner such that they don't catastrophically forget keypoints given the unbalanced inputs (via our keypoint gradient masking and memory replay approaches). These models show excellent performance across six pose benchmarks. Then, to ensure maximal usability for end-users, we demonstrate how to fine-tune the models on differently labeled data and provide tooling for unsupervised video adaptation to boost performance and decrease jitter across frames. If the models are fine-tuned, we show SuperAnimal models are 10-100$\times$ more data efficient than prior transfer-learning-based approaches. We illustrate the utility of our models in behavioral classification in mice and gait analysis in horses. Collectively, this presents a data-efficient solution for animal pose estimation.