Goto

Collaborating Authors

 Filice, Simone


Generating Diverse Q&A Benchmarks for RAG Evaluation with DataMorgana

arXiv.org Artificial Intelligence

Evaluating Retrieval-Augmented Generation (RAG) systems, especially in domain-specific contexts, requires benchmarks that address the distinctive requirements of the applicative scenario. Since real data can be hard to obtain, a common strategy is to use LLM-based methods to generate synthetic data. Existing solutions are general purpose: given a document, they generate a question to build a Q&A pair. However, although the generated questions can be individually good, they are typically not diverse enough to reasonably cover the different ways real end-users can interact with the RAG system. We introduce here DataMorgana, a tool for generating highly customizable and diverse synthetic Q&A benchmarks tailored to RAG applications. DataMorgana enables detailed configurations of user and question categories and provides control over their distribution within the benchmark. It uses a lightweight two-stage process, ensuring efficiency and fast iterations, while generating benchmarks that reflect the expected traffic. We conduct a thorough line of experiments, showing quantitatively and qualitatively that DataMorgana surpasses existing tools and approaches in producing lexically, syntactically, and semantically diverse question sets across domain-specific and general-knowledge corpora. DataMorgana will be made available to selected teams in the research community, as first beta testers, in the context of the upcoming SIGIR'2025 LiveRAG challenge to be announced in early February 2025.


Enhancing Low-Resource LLMs Classification with PEFT and Synthetic Data

arXiv.org Artificial Intelligence

Large Language Models (LLMs) operating in 0-shot or few-shot settings achieve competitive results in Text Classification tasks. In-Context Learning (ICL) typically achieves better accuracy than the 0-shot setting, but it pays in terms of efficiency, due to the longer input prompt. In this paper, we propose a strategy to make LLMs as efficient as 0-shot text classifiers, while getting comparable or better accuracy than ICL. Our solution targets the low resource setting, i.e., when only 4 examples per class are available. Using a single LLM and few-shot real data we perform a sequence of generation, filtering and Parameter-Efficient Fine-Tuning steps to create a robust and efficient classifier. Experimental results show that our approach leads to competitive results on multiple text classification datasets.


The Power of Noise: Redefining Retrieval for RAG Systems

arXiv.org Artificial Intelligence

Retrieval-Augmented Generation (RAG) systems represent a significant advancement over traditional Large Language Models (LLMs). RAG systems enhance their generation ability by incorporating external data retrieved through an Information Retrieval (IR) phase, overcoming the limitations of standard LLMs, which are restricted to their pre-trained knowledge and limited context window. Most research in this area has predominantly concentrated on the generative aspect of LLMs within RAG systems. Our study fills this gap by thoroughly and critically analyzing the influence of IR components on RAG systems. This paper analyzes which characteristics a retriever should possess for an effective RAG's prompt formulation, focusing on the type of documents that should be retrieved. We evaluate various elements, such as the relevance of the documents to the prompt, their position, and the number included in the context. Our findings reveal, among other insights, that including irrelevant documents can unexpectedly enhance performance by more than 30% in accuracy, contradicting our initial assumption of diminished quality. These results underscore the need for developing specialized strategies to integrate retrieval with language generation models, thereby laying the groundwork for future research in this field.


Evaluation Metrics of Language Generation Models for Synthetic Traffic Generation Tasks

arXiv.org Artificial Intelligence

Many Natural Language Generation (NLG) tasks aim to generate a single output text given an input prompt. Other settings require the generation of multiple texts, e.g., for Synthetic Traffic Generation (STG). This generation task is crucial for training and evaluating QA systems as well as conversational agents, where the goal is to generate multiple questions or utterances resembling the linguistic variability of real users. In this paper, we show that common NLG metrics, like BLEU, are not suitable for evaluating STG. We propose and evaluate several metrics designed to compare the generated traffic to the distribution of real user texts. We validate our metrics with an automatic procedure to verify whether they capture different types of quality issues of generated data; we also run human annotations to verify the correlation with human judgements. Experiments on three tasks, i.e., Shopping Utterance Generation, Product Question Generation and Query Auto Completion, demonstrate that our metrics are effective for evaluating STG tasks, and improve the agreement with human judgement up to 20% with respect to common NLG metrics. We believe these findings can pave the way towards better solutions for estimating the representativeness of synthetic text data.


Faithful Low-Resource Data-to-Text Generation through Cycle Training

arXiv.org Artificial Intelligence

Methods to generate text from structured data have advanced significantly in recent years, primarily due to fine-tuning of pre-trained language models on large datasets. However, such models can fail to produce output faithful to the input data, particularly on out-of-domain data. Sufficient annotated data is often not available for specific domains, leading us to seek an unsupervised approach to improve the faithfulness of output text. Since the problem is fundamentally one of consistency between the representations of the structured data and text, we evaluate the effectiveness of cycle training in this work. Cycle training uses two models which are inverses of each other: one that generates text from structured data, and one which generates the structured data from natural language text. We show that cycle training, when initialized with a small amount of supervised data (100 samples in our case), achieves nearly the same performance as fully supervised approaches for the data-to-text generation task on the WebNLG, E2E, WTQ, and WSQL datasets. We perform extensive empirical analysis with automated evaluation metrics and a newly designed human evaluation schema to reveal different cycle training strategies' effectiveness of reducing various types of generation errors. Our code is publicly available at https://github.com/Edillower/CycleNLG.


Preventing Catastrophic Forgetting in Continual Learning of New Natural Language Tasks

arXiv.org Artificial Intelligence

Multi-Task Learning (MTL) is widely-accepted in Natural Language Processing as a standard technique for learning multiple related tasks in one model. Training an MTL model requires having the training data for all tasks available at the same time. As systems usually evolve over time, (e.g., to support new functionalities), adding a new task to an existing MTL model usually requires retraining the model from scratch on all the tasks and this can be time-consuming and computationally expensive. Moreover, in some scenarios, the data used to train the original training may be no longer available, for example, due to storage or privacy concerns. In this paper, we approach the problem of incrementally expanding MTL models' capability to solve new tasks over time by distilling the knowledge of an already trained model on n tasks into a new one for solving n+1 tasks. To avoid catastrophic forgetting, we propose to exploit unlabeled data from the same distributions of the old tasks. Our experiments on publicly available benchmarks show that such a technique dramatically benefits the distillation by preserving the already acquired knowledge (i.e., preventing up to 20% performance drops on old tasks) while obtaining good performance on the incrementally added tasks. Further, we also show that our approach is beneficial in practical settings by using data from a leading voice assistant.


A Stratified Strategy for Efficient Kernel-Based Learning

AAAI Conferences

In Kernel-based Learning the targeted phenomenon is summarized by a set of explanatory examples derived from the training set. When the model size grows with the complexity of the task, such approaches are so computationally demanding that the adoption of comprehensive models is not always viable.In this paper, a general framework aimed at minimizing this problem is proposed: multiple classifiers are stratified and dynamically invoked according to increasing levels of complexity corresponding to incrementally more expressive representation spaces.Computationally expensive inferences are thus adopted only when the classification at lower levels is too uncertain over an individual instance. The application of complex functions is thus avoided where possible, with a significant reduction of the overall costs. The proposed strategy has been integrated within two well-known algorithms: Support Vector Machines and Passive-Aggressive Online classifier.A significant cost reduction (up to 90%), with a negligible performance drop, is observed against two Natural Language Processing tasks, i.e. Question Classification and Sentiment Analysis in Twitter.