Filatov, Oleg
Time Transfer: On Optimal Learning Rate and Batch Size In The Infinite Data Limit
Filatov, Oleg, Ebert, Jan, Wang, Jiangtao, Kesselheim, Stefan
One of the main challenges in optimal scaling of large language models (LLMs) is the prohibitive cost of hyperparameter tuning, particularly learning rate $\eta$ and batch size $B$. While techniques like $\mu$P (Yang et al., 2022) provide scaling rules for optimal $\eta$ transfer in the infinite model size limit, the optimal scaling behavior in the infinite data size limit remains unknown. We fill in this gap by observing for the first time an intricate dependence of optimal $\eta$ scaling on the pretraining token budget $T$, $B$ and its relation to the critical batch size $B_\mathrm{crit}$, which we measure to evolve as $B_\mathrm{crit} \propto T$. Furthermore, we show that the optimal batch size is positively correlated with $B_\mathrm{crit}$: keeping it fixed becomes suboptimal over time even if learning rate is scaled optimally. Surprisingly, our results demonstrate that the observed optimal $\eta$ and $B$ dynamics are preserved with $\mu$P model scaling, challenging the conventional view of $B_\mathrm{crit}$ dependence solely on loss value. Complementing optimality, we examine the sensitivity of loss to changes in learning rate, where we find the sensitivity to decrease with increase of $T$ and to remain constant with $\mu$P model scaling. We hope our results make the first step towards a unified picture of the joint optimal data and model scaling.
Teuken-7B-Base & Teuken-7B-Instruct: Towards European LLMs
Ali, Mehdi, Fromm, Michael, Thellmann, Klaudia, Ebert, Jan, Weber, Alexander Arno, Rutmann, Richard, Jain, Charvi, Lübbering, Max, Steinigen, Daniel, Leveling, Johannes, Klug, Katrin, Buschhoff, Jasper Schulze, Jurkschat, Lena, Abdelwahab, Hammam, Stein, Benny Jörg, Sylla, Karl-Heinz, Denisov, Pavel, Brandizzi, Nicolo', Saleem, Qasid, Bhowmick, Anirban, Helmer, Lennard, John, Chelsea, Suarez, Pedro Ortiz, Ostendorff, Malte, Jude, Alex, Manjunath, Lalith, Weinbach, Samuel, Penke, Carolin, Filatov, Oleg, Asaadi, Shima, Barth, Fabio, Sifa, Rafet, Küch, Fabian, Herten, Andreas, Jäkel, René, Rehm, Georg, Kesselheim, Stefan, Köhler, Joachim, Flores-Herr, Nicolas
We present two multilingual LLMs designed to embrace Europe's linguistic diversity by supporting all 24 official languages of the European Union. Trained on a dataset comprising around 60% non-English data and utilizing a custom multilingual tokenizer, our models address the limitations of existing LLMs that predominantly focus on English or a few high-resource languages. We detail the models' development principles, i.e., data composition, tokenizer optimization, and training methodologies. The models demonstrate competitive performance across multilingual benchmarks, as evidenced by their performance on European versions of ARC, HellaSwag, MMLU, and TruthfulQA.