Figueiredo, Mario A. T.
Counterfactual MRI Data Augmentation using Conditional Denoising Diffusion Generative Models
Morão, Pedro, Santinha, Joao, Forghani, Yasna, Loução, Nuno, Gouveia, Pedro, Figueiredo, Mario A. T.
In this work, we introduce a novel method using conditional denoising diffusion generative models (cDDGMs) to generate counterfactual magnetic resonance (MR) images that simulate different IAP without altering patient anatomy. We demonstrate that using these counterfactual images for data augmentation can improve segmentation accuracy, particularly in out-of-distribution settings, enhancing the overall generalizability and robustness of DL models across diverse imaging conditions. Our approach shows promise in addressing domain and covariate shifts in medical imaging.
Impulsive Noise Robust Sparse Recovery via Continuous Mixed Norm
Javaheri, Amirhossein, Zayyani, Hadi, Figueiredo, Mario A. T., Marvasti, Farrokh
This paper investigates the problem of sparse signal recovery in the presence of additive impulsive noise. The heavytailed impulsive noise is well modelled with stable distributions. Since there is no explicit formulation for the probability density function of $S\alpha S$ distribution, alternative approximations like Generalized Gaussian Distribution (GGD) are used which impose $\ell_p$-norm fidelity on the residual error. In this paper, we exploit a Continuous Mixed Norm (CMN) for robust sparse recovery instead of $\ell_p$-norm. We show that in blind conditions, i.e., in case where the parameters of noise distribution are unknown, incorporating CMN can lead to near optimal recovery. We apply Alternating Direction Method of Multipliers (ADMM) for solving the problem induced by utilizing CMN for robust sparse recovery. In this approach, CMN is replaced with a surrogate function and Majorization-Minimization technique is incorporated to solve the problem. Simulation results confirm the efficiency of the proposed method compared to some recent algorithms in the literature for impulsive noise robust sparse recovery.
Adaptive ADMM with Spectral Penalty Parameter Selection
Xu, Zheng, Figueiredo, Mario A. T., Goldstein, Tom
The alternating direction method of multipliers (ADMM) is a versatile tool for solving a wide range of constrained optimization problems, with differentiable or non-differentiable objective functions. Unfortunately, its performance is highly sensitive to a penalty parameter, which makes ADMM often unreliable and hard to automate for a non-expert user. We tackle this weakness of ADMM by proposing a method to adaptively tune the penalty parameters to achieve fast convergence. The resulting adaptive ADMM (AADMM) algorithm, inspired by the successful Barzilai-Borwein spectral method for gradient descent, yields fast convergence and relative insensitivity to the initial stepsize and problem scaling.
Sparse Estimation with Strongly Correlated Variables using Ordered Weighted L1 Regularization
Figueiredo, Mario A. T., Nowak, Robert D.
This paper studies ordered weighted L1 (OWL) norm regularization for sparse estimation problems with strongly correlated variables. We prove sufficient conditions for clustering based on the correlation/colinearity of variables using the OWL norm, of which the so-called OSCAR is a particular case. Our results extend previous ones for OSCAR in several ways: for the squared error loss, our conditions hold for the more general OWL norm and under weaker assumptions; we also establish clustering conditions for the absolute error loss, which is, as far as we know, a novel result. Furthermore, we characterize the statistical performance of OWL norm regularization for generative models in which certain clusters of regression variables are strongly (even perfectly) correlated, but variables in different clusters are uncorrelated. We show that if the true p-dimensional signal generating the data involves only s of the clusters, then O(s log p) samples suffice to accurately estimate the signal, regardless of the number of coefficients within the clusters. The estimation of s-sparse signals with completely independent variables requires just as many measurements. In other words, using the OWL we pay no price (in terms of the number of measurements) for the presence of strongly correlated variables.
Alternating Directions Dual Decomposition
Martins, Andre F. T., Figueiredo, Mario A. T., Aguiar, Pedro M. Q., Smith, Noah A., Xing, Eric P.
We propose AD3, a new algorithm for approximate maximum a posteriori (MAP) inference on factor graphs based on the alternating directions method of multipliers. Like dual decomposition algorithms, AD3 uses worker nodes to iteratively solve local subproblems and a controller node to combine these local solutions into a global update. The key characteristic of AD3 is that each local subproblem has a quadratic regularizer, leading to a faster consensus than subgradient-based dual decomposition, both theoretically and in practice. We provide closed-form solutions for these AD3 subproblems for binary pairwise factors and factors imposing first-order logic constraints. For arbitrary factors (large or combinatorial), we introduce an active set method which requires only an oracle for computing a local MAP configuration, making AD3 applicable to a wide range of problems. Experiments on synthetic and realworld problems show that AD3 compares favorably with the state-of-the-art.
Online Multiple Kernel Learning for Structured Prediction
Martins, Andre F. T., Figueiredo, Mario A. T., Aguiar, Pedro M. Q., Smith, Noah A., Xing, Eric P.
Despite the recent progress towards efficient multiple kernel learning (MKL), the structured output case remains an open research front. Current approaches involve repeatedly solving a batch learning problem, which makes them inadequate for large scale scenarios. We propose a new family of online proximal algorithms for MKL (as well as for group-lasso and variants thereof), which overcomes that drawback. We show regret, convergence, and generalization bounds for the proposed method. Experiments on handwriting recognition and dependency parsing testify for the successfulness of the approach.