Goto

Collaborating Authors

 Figueira, Santiago


PDL on Steroids: on Expressive Extensions of PDL with Intersection and Converse

arXiv.org Artificial Intelligence

We introduce CPDL+, a family of expressive logics rooted in Propositional Dynamic Logic (PDL). In terms of expressive power, CPDL+ strictly contains PDL extended with intersection and converse (a.k.a. ICPDL) as well as Conjunctive Queries (CQ), Conjunctive Regular Path Queries (CRPQ), or some known extensions thereof (Regular Queries and CQPDL). We investigate the expressive power, characterization of bisimulation, satisfiability, and model checking for CPDL+. We argue that natural subclasses of CPDL+ can be defined in terms of the tree-width of the underlying graphs of the formulas. We show that the class of CPDL+ formulas of tree-width 2 is equivalent to ICPDL, and that it also coincides with CPDL+ formulas of tree-width 1. However, beyond tree-width 2, incrementing the tree-width strictly increases the expressive power. We characterize the expressive power for every class of fixed tree-width formulas in terms of a bisimulation game with pebbles. Based on this characterization, we show that CPDL+ has a tree-like model property. We prove that the satisfiability problem is decidable in 2ExpTime on fixed tree-width formulas, coinciding with the complexity of ICPDL. We also exhibit classes for which satisfiability is reduced to ExpTime. Finally, we establish that the model checking problem for fixed tree-width formulas is in \ptime, contrary to the full class CPDL+.


Learning is Compiling: Experience Shapes Concept Learning by Combining Primitives in a Language of Thought

arXiv.org Artificial Intelligence

Recent approaches to human concept learning have successfully combined the power of symbolic, infinitely productive, rule systems and statistical learning. The aim of most of these studies is to reveal the underlying language structuring these representations and providing a general substrate for thought. Here, we ask about the plasticity of symbolic descriptive languages. We perform two concept learning experiments, that consistently demonstrate that humans can change very rapidly the repertoire of symbols they use to identify concepts, by compiling expressions which are frequently used into new symbols of the language. The pattern of concept learning times is accurately described by a Bayesian agent that rationally updates the probability of compiling a new expression according to how useful it has been to compress concepts so far. By portraying the Language of Thought as a flexible system of rules, we also highlight the intrinsic difficulties to pin it down empirically.


Bisimulations on Data Graphs

Journal of Artificial Intelligence Research

Bisimulation provides structural conditions to characterize indistinguishability from an external observer between nodes on labeled graphs. It is a fundamental notion used in many areas, such as verification, graph-structured databases, and constraint satisfaction. However, several current applications use graphs where nodes also contain data (the so called "data graphs"), and where observers can test for equality or inequality of data values (e.g., asking the attribute 'name' of a node to be different from that of all its neighbors). The present work constitutes a first investigation of "data aware" bisimulations on data graphs. We study the problem of computing such bisimulations, based on the observational indistinguishability for XPath ---a language that extends modal logics like PDL with tests for data equality--- with and without transitive closure operators. We show that in general the problem is PSpace-complete, but identify several restrictions that yield better complexity bounds (coNP, PTime) by controlling suitable parameters of the problem, namely the amount of non-locality allowed, and the class of models considered (graphs, DAGs, trees). In particular, this analysis yields a hierarchy of tractable fragments.