Goto

Collaborating Authors

 Field, Michael


Symmetry Breaking in Symmetric Tensor Decomposition

arXiv.org Artificial Intelligence

In this note, we consider the highly nonconvex optimization problem associated with computing the rank decomposition of symmetric tensors. We formulate the invariance properties of the loss function and show that critical points detected by standard gradient based methods are \emph{symmetry breaking} with respect to the target tensor. The phenomena, seen for different choices of target tensors and norms, make possible the use of recently developed analytic and algebraic tools for studying nonconvex optimization landscapes exhibiting symmetry breaking phenomena of similar nature.


Analytic Characterization of the Hessian in Shallow ReLU Models: A Tale of Symmetry

arXiv.org Machine Learning

We consider the optimization problem associated with fitting two-layers ReLU networks with respect to the squared loss, where labels are generated by a target network. We leverage the rich symmetry structure to analytically characterize the Hessian at various families of spurious minima in the natural regime where the number of inputs $d$ and the number of hidden neurons $k$ is finite. In particular, we prove that for $d\ge k$ standard Gaussian inputs: (a) of the $dk$ eigenvalues of the Hessian, $dk - O(d)$ concentrate near zero, (b) $\Omega(d)$ of the eigenvalues grow linearly with $k$. Although this phenomenon of extremely skewed spectrum has been observed many times before, to our knowledge, this is the first time it has been established {rigorously}. Our analytic approach uses techniques, new to the field, from symmetry breaking and representation theory, and carries important implications for our ability to argue about statistical generalization through local curvature.