Goto

Collaborating Authors

 Ferraro, Pietro


Induced Modularity and Community Detection for Functionally Interpretable Reinforcement Learning

arXiv.org Artificial Intelligence

Interpretability in reinforcement learning is crucial for ensuring AI systems align with human values and fulfill the diverse related requirements including safety, robustness and fairness. Building on recent approaches to encouraging sparsity and locality in neural networks, we demonstrate how the penalisation of non-local weights leads to the emergence of functionally independent modules in the policy network of a reinforcement learning agent. To illustrate this, we demonstrate the emergence of two parallel modules for assessment of movement along the X and Y axes in a stochastic Minigrid environment. Through the novel application of community detection algorithms, we show how these modules can be automatically identified and their functional roles verified through direct intervention on the network weights prior to inference. This establishes a scalable framework for reinforcement learning interpretability through functional modularity, addressing challenges regarding the trade-off between completeness and cognitive tractability of reinforcement learning explanations.


Reinforcement Learning with Adaptive Control Regularization for Safe Control of Critical Systems

arXiv.org Artificial Intelligence

Reinforcement Learning (RL) is a powerful method for controlling dynamic systems, but its learning mechanism can lead to unpredictable actions that undermine the safety of critical systems. Here, we propose RL with Adaptive Control Regularization (RL-ACR), an algorithm that enables safe RL exploration by combining the RL policy with a policy regularizer that hard-codes safety constraints. We perform policy combination via a "focus network," which determines the appropriate combination depending on the state -- relying more on the safe policy regularizer for less-exploited states while allowing unbiased convergence for well-exploited states. In a series of critical control applications, we demonstrate that RL-ACR ensures safety during training while achieving the performance standards of model-free RL approaches that disregard safety.