Goto

Collaborating Authors

 Ferrara, Antonio


Beyond Demographic Parity: Redefining Equal Treatment

arXiv.org Artificial Intelligence

Liberalism-oriented political philosophy reasons that all individuals should be treated equally independently of their protected characteristics. Related work in machine learning has translated the concept of \emph{equal treatment} into terms of \emph{equal outcome} and measured it as \emph{demographic parity} (also called \emph{statistical parity}). Our analysis reveals that the two concepts of equal outcome and equal treatment diverge; therefore, demographic parity does not faithfully represent the notion of \emph{equal treatment}. We propose a new formalization for equal treatment by (i) considering the influence of feature values on predictions, such as computed by Shapley values decomposing predictions across its features, (ii) defining distributions of explanations, and (iii) comparing explanation distributions between populations with different protected characteristics. We show the theoretical properties of our notion of equal treatment and devise a classifier two-sample test based on the AUC of an equal treatment inspector. We study our formalization of equal treatment on synthetic and natural data. We release \texttt{explanationspace}, an open-source Python package with methods and tutorials.


How to Put Users in Control of their Data via Federated Pair-Wise Recommendation

arXiv.org Machine Learning

Recommendation services are extensively adopted in several user-centered applications as a tool to alleviate the information overload problem and help users in orienteering in a vast space of possible choices. In such scenarios, privacy is a crucial concern since users may not be willing to share their sensitive preferences (e.g., visited locations, read books, bought items) with a central server. Unfortunately, data harvesting and collection is at the basis of modern, state-of-the-art approaches to recommendation. Decreased users' willingness to share personal information along with data minimization/protection policies (such as the European GDPR), can result in the "data scarcity" dilemma affecting data-intensive applications such as recommender systems (RS). We argue that scarcity of adequate data due to privacy concerns can severely impair the quality of learned models and, in the long term, result in a turnover and disloyal customers with direct consequences for lives, society, and businesses. To address these issues, we present FPL, an architecture in which users collaborate in training a central factorization model while controlling the amount of sensitive data leaving their devices. The proposed approach implements pair-wise learning to rank optimization by following the Federated Learning principles conceived originally to mitigate the privacy risks of traditional machine learning. We have conducted an extensive experimental evaluation on three Foursquare datasets and have verified the effectiveness of the proposed architecture concerning accuracy and beyond-accuracy objectives. We have analyzed the impact of communication cost with the central server on the system's performance, by varying the amount of local computation and training parallelism. Finally, we have carefully examined the impact of disclosed users' information on the quality of the final model and ...


Prioritized Multi-Criteria Federated Learning

arXiv.org Machine Learning

In Machine Learning scenarios, privacy is a crucial concern when models have to be trained with private data coming from users of a service, such as a recommender system, a location-based mobile service, a mobile phone text messaging service providing next word prediction, or a face image classification system. The main issue is that, often, data are collected, transferred, and processed by third parties. These transactions violate new regulations, such as GDPR. Furthermore, users usually are not willing to share private data such as their visited locations, the text messages they wrote, or the photo they took with a third party. On the other hand, users appreciate services that work based on their behaviors and preferences. In order to address these issues, Federated Learning (FL) has been recently proposed as a means to build ML models based on private datasets distributed over a large number of clients, while preventing data leakage. A federation of users is asked to train a same global model on their private data, while a central coordinating server receives locally computed updates by clients and aggregate them to obtain a better global model, without the need to use clients' actual data. In this work, we extend the FL approach by pushing forward the state-of-the-art approaches in the aggregation step of FL, which we deem crucial for building a high-quality global model. Specifically, we propose an approach that takes into account a suite of client-specific criteria that constitute the basis for assigning a score to each client based on a priority of criteria defined by the service provider. Extensive experiments on two publicly available datasets indicate the merits of the proposed approach compared to standard FL baseline.


Towards Effective Device-Aware Federated Learning

arXiv.org Machine Learning

With the wealth of information produced by social networks, smartphones, medical or financial applications, speculations have been raised about the sensitivity of such data in terms of users' personal privacy and data security. To address the above issues, Federated Learning (FL) has been recently proposed as a means to leave data and computational resources distributed over a large number of nodes (clients) where a central coordinating server aggregates only locally computed updates without knowing the original data. In this work, we extend the FL framework by pushing forward the state the art in the field on several dimensions: (i) unlike the original FedAvg approach relying solely on single criteria (i.e., local dataset size), a suite of domain- and client-specific criteria constitute the basis to compute each local client's contribution, (ii) the multi-criteria contribution of each device is computed in a prioritized fashion by leveraging a priority-aware aggregation operator used in the field of information retrieval, and (iii) a mechanism is proposed for online-adjustment of the aggregation operator parameters via a local search strategy with backtracking. Extensive experiments on a publicly available dataset indicate the merits of the proposed approach compared to standard FedAvg baseline.