Goto

Collaborating Authors

 Ferng, Chun-Sung


Sufficient Context: A New Lens on Retrieval Augmented Generation Systems

arXiv.org Artificial Intelligence

Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a way to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that proprietary LLMs (Gemini, GPT, Claude) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2-10% for Gemini, GPT, and Gemma. Providing Large Language Models (LLMs) with additional context, such as in Retrieval Augmented Generation (RAG) systems, has led to major improvements in LLM factuality and verifiability when adapting to new domains (Lewis et al., 2020). In the case of open-domain question answering, a retrieval model provides context at inference time in the form of snippets or long-form text (Zhu et al., 2021). Then, the model synthesizes the query along with this added context to generate the answer. The ideal outcome is for the LLM to output the correct answer if the provided context contains enough information to answer the question when combined with the model's parametric knowledge. Otherwise, the model should abstain from answering and/or ask for more information. One core challenge in achieving this ideal outcome is building models that can use the provided context only when it helps answer the question correctly. Several works have investigated this issue by evaluating models in the presence of irrelevant information in the context (discussed in Section 2). However, "relevant information" can range from directly containing the answer to simply being topically related Work done during an internship at Google. Work done during an internship at Google. Question: Who is Lya L. married to?


SLED: Self Logits Evolution Decoding for Improving Factuality in Large Language Models

arXiv.org Machine Learning

Large language models (LLMs) have demonstrated remarkable capabilities, but their outputs can sometimes be unreliable or factually incorrect. To address this, we introduce Self Logits Evolution Decoding (SLED), a novel decoding framework that enhances the truthfulness of LLMs without relying on external knowledge bases or requiring further fine-tuning. From an optimization perspective, our SLED framework leverages the latent knowledge embedded within the LLM by contrasting the output logits from the final layer with those from early layers. It then utilizes an approximate gradient approach to enable latent knowledge to guide the self-refinement of outputs, thereby effectively improving factual accuracy. Extensive experiments have been conducted on established benchmarks across a diverse range of model families (LLaMA 2, LLaMA 3, Gemma) and scales (from 2B to 70B), including more advanced architectural configurations such as the mixture of experts (MoE). Our evaluation spans a wide variety of tasks, including multi-choice, open-generation, and adaptations to chain-of-thought reasoning tasks. The results demonstrate that SLED consistently improves factual accuracy by up to 20\% compared to existing decoding methods while maintaining natural language fluency and negligible latency overhead. Furthermore, it can be flexibly combined with other decoding methods to further enhance their performance.


Substance or Style: What Does Your Image Embedding Know?

arXiv.org Artificial Intelligence

Probes are small networks that predict properties of underlying data from embeddings, and they provide a targeted, effective way to illuminate the information contained in embeddings. While analysis through the use of probes has become standard in NLP, there has been much less exploration in vision. Image foundation models have primarily been evaluated for semantic content. Better understanding the non-semantic information in popular embeddings (e.g., MAE, SimCLR, or CLIP) will shed new light both on the training algorithms and on the uses for these foundation models. We design a systematic transformation prediction task and measure the visual content of embeddings along many axes, including image style, quality, and a range of natural and artificial transformations. Surprisingly, six embeddings (including SimCLR) encode enough non-semantic information to identify dozens of transformations. We also consider a generalization task, where we group similar transformations and hold out several for testing. We find that image-text models (CLIP and ALIGN) are better at recognizing new examples of style transfer than masking-based models (CAN and MAE). Overall, our results suggest that the choice of pre-training algorithm impacts the types of information in the embedding, and certain models are better than others for non-semantic downstream tasks.


Finding Fast Transformers: One-Shot Neural Architecture Search by Component Composition

arXiv.org Machine Learning

Transformer-based models have achieved stateof-the-art results in many tasks in natural language processing. However, such models are usually slow at inference time, making deployment difficult. In this paper, we develop an efficient algorithm to search for fast models while maintaining model quality. We describe a novel approach to decompose the Transformer architecture into smaller components, and propose a sampling-based one-shot architecture search method to find an optimal model for inference. The model search process is more efficient than alternatives, adding only a small overhead to training time. By applying our methods to BERT-base architectures, we achieve 10% to 30% speedup for pre-trained BERT and 70% speedup on top of a previous state-of-the-art distilled BERT model on Cloud TPU-v2 with a generally acceptable drop in performance.