Fernandes, Natasha
Empirical Calibration and Metric Differential Privacy in Language Models
Faustini, Pedro, Fernandes, Natasha, McIver, Annabelle, Dras, Mark
NLP models trained with differential privacy (DP) usually adopt the DP-SGD framework, and privacy guarantees are often reported in terms of the privacy budget $\epsilon$. However, $\epsilon$ does not have any intrinsic meaning, and it is generally not possible to compare across variants of the framework. Work in image processing has therefore explored how to empirically calibrate noise across frameworks using Membership Inference Attacks (MIAs). However, this kind of calibration has not been established for NLP. In this paper, we show that MIAs offer little help in calibrating privacy, whereas reconstruction attacks are more useful. As a use case, we define a novel kind of directional privacy based on the von Mises-Fisher (VMF) distribution, a metric DP mechanism that perturbs angular distance rather than adding (isotropic) Gaussian noise, and apply this to NLP architectures. We show that, even though formal guarantees are incomparable, empirical privacy calibration reveals that each mechanism has different areas of strength with respect to utility-privacy trade-offs.
Comparing privacy notions for protection against reconstruction attacks in machine learning
Biswas, Sayan, Dras, Mark, Faustini, Pedro, Fernandes, Natasha, McIver, Annabelle, Palamidessi, Catuscia, Sadeghi, Parastoo
Within the machine learning community, reconstruction attacks are a principal concern and have been identified even in federated learning (FL), which was designed with privacy preservation in mind. In response to these threats, the privacy community recommends the use of differential privacy (DP) in the stochastic gradient descent algorithm, termed DP-SGD. However, the proliferation of variants of DP in recent years\textemdash such as metric privacy\textemdash has made it challenging to conduct a fair comparison between different mechanisms due to the different meanings of the privacy parameters $\epsilon$ and $\delta$ across different variants. Thus, interpreting the practical implications of $\epsilon$ and $\delta$ in the FL context and amongst variants of DP remains ambiguous. In this paper, we lay a foundational framework for comparing mechanisms with differing notions of privacy guarantees, namely $(\epsilon,\delta)$-DP and metric privacy. We provide two foundational means of comparison: firstly, via the well-established $(\epsilon,\delta)$-DP guarantees, made possible through the R\'enyi differential privacy framework; and secondly, via Bayes' capacity, which we identify as an appropriate measure for reconstruction threats.
Bayes' capacity as a measure for reconstruction attacks in federated learning
Biswas, Sayan, Dras, Mark, Faustini, Pedro, Fernandes, Natasha, McIver, Annabelle, Palamidessi, Catuscia, Sadeghi, Parastoo
Within the machine learning community, reconstruction attacks are a principal attack of concern and have been identified even in federated learning, which was designed with privacy preservation in mind. In federated learning, it has been shown that an adversary with knowledge of the machine learning architecture is able to infer the exact value of a training element given an observation of the weight updates performed during stochastic gradient descent. In response to these threats, the privacy community recommends the use of differential privacy in the stochastic gradient descent algorithm, termed DP-SGD. However, DP has not yet been formally established as an effective countermeasure against reconstruction attacks. In this paper, we formalise the reconstruction threat model using the information-theoretic framework of quantitative information flow. We show that the Bayes' capacity, related to the Sibson mutual information of order infinity, represents a tight upper bound on the leakage of the DP-SGD algorithm to an adversary interested in performing a reconstruction attack. We provide empirical results demonstrating the effectiveness of this measure for comparing mechanisms against reconstruction threats.
Directional Privacy for Deep Learning
Faustini, Pedro, Fernandes, Natasha, Tonni, Shakila, McIver, Annabelle, Dras, Mark
Differentially Private Stochastic Gradient Descent (DP-SGD) is a key method for applying privacy in the training of deep learning models. It applies isotropic Gaussian noise to gradients during training, which can perturb these gradients in any direction, damaging utility. Metric DP, however, can provide alternative mechanisms based on arbitrary metrics that might be more suitable for preserving utility. In this paper, we apply \textit{directional privacy}, via a mechanism based on the von Mises-Fisher (VMF) distribution, to perturb gradients in terms of \textit{angular distance} so that gradient direction is broadly preserved. We show that this provides both $\epsilon$-DP and $\epsilon d$-privacy for deep learning training, rather than the $(\epsilon, \delta)$-privacy of the Gaussian mechanism. Experiments on key datasets then indicate that the VMF mechanism can outperform the Gaussian in the utility-privacy trade-off. In particular, our experiments provide a direct empirical comparison of privacy between the two approaches in terms of their ability to defend against reconstruction and membership inference.
Locality Sensitive Hashing with Extended Differential Privacy
Fernandes, Natasha, Kawamoto, Yusuke, Murakami, Takao
Extended differential privacy, a generalization of standard differential privacy (DP) using a general metric, has been widely studied to provide rigorous privacy guarantees while keeping high utility. However, existing works on extended DP are limited to few metrics, such as the Euclidean metric. Consequently, they have only a small number of applications, such as location-based services and document processing. In this paper, we propose a couple of mechanisms providing extended DP with a different metric: angular distance (or cosine distance). Our mechanisms are based on locality sensitive hashing (LSH), which can be applied to the angular distance and work well for personal data in a high-dimensional space. We theoretically analyze the privacy properties of our mechanisms, and prove extended DP for input data by taking into account that LSH preserves the original metric only approximately. We apply our mechanisms to friend matching based on high-dimensional personal data with angular distance in the local model, and evaluate our mechanisms using two real datasets. We show that LDP requires a very large privacy budget and that RAPPOR does not work in this application. Then we show that our mechanisms enable friend matching with high utility and rigorous privacy guarantees based on extended DP.