Goto

Collaborating Authors

 Feriani, Amal


SAGE: Smart home Agent with Grounded Execution

arXiv.org Artificial Intelligence

The common sense reasoning abilities and vast general knowledge of Large Language Models (LLMs) make them a natural fit for interpreting user requests in a Smart Home assistant context. LLMs, however, lack specific knowledge about the user and their home limit their potential impact. SAGE (Smart Home Agent with Grounded Execution), overcomes these and other limitations by using a scheme in which a user request triggers an LLM-controlled sequence of discrete actions. These actions can be used to retrieve information, interact with the user, or manipulate device states. SAGE controls this process through a dynamically constructed tree of LLM prompts, which help it decide which action to take next, whether an action was successful, and when to terminate the process. The SAGE action set augments an LLM's capabilities to support some of the most critical requirements for a Smart Home assistant. These include: flexible and scalable user preference management ("is my team playing tonight?"), access to any smart device's full functionality without device-specific code via API reading "turn down the screen brightness on my dryer", persistent device state monitoring ("remind me to throw out the milk when I open the fridge"), natural device references using only a photo of the room ("turn on the light on the dresser"), and more. We introduce a benchmark of 50 new and challenging smart home tasks where SAGE achieves a 75% success rate, significantly outperforming existing LLM-enabled baselines (30% success rate).


Device-Free Human State Estimation using UWB Multi-Static Radios

arXiv.org Artificial Intelligence

We present a human state estimation framework that allows us to estimate the location, and even the activities, of people in an indoor environment without the requirement that they carry a specific devices with them. To achieve this "device free" localization we use a small number of low-cost Ultra-Wide Band (UWB) sensors distributed across the environment of interest. To achieve high quality estimation from the UWB signals merely reflected of people in the environment, we exploit a deep network that can learn to make inferences. The hardware setup consists of commercial off-the-shelf (COTS) single antenna UWB modules for sensing, paired with Raspberry PI units for computational processing and data transfer. We make use of the channel impulse response (CIR) measurements from the UWB sensors to estimate the human state - comprised of location and activity - in a given area. Additionally, we can also estimate the number of humans that occupy this region of interest. In our approach, first, we pre-process the CIR data which involves meticulous aggregation of measurements and extraction of key statistics. Afterwards, we leverage a convolutional deep neural network to map the CIRs into precise location estimates with sub-30 cm accuracy. Similarly, we achieve accurate human activity recognition and occupancy counting results. We show that we can quickly fine-tune our model for new out-of-distribution users, a process that requires only a few minutes of data and a few epochs of training. Our results show that UWB is a promising solution for adaptable smart-home localization and activity recognition problems.


Channel Estimation in RIS-Enabled mmWave Wireless Systems: A Variational Inference Approach

arXiv.org Artificial Intelligence

Channel estimation in reconfigurable intelligent surfaces (RIS)-aided systems is crucial for optimal configuration of the RIS and various downstream tasks such as user localization. In RIS-aided systems, channel estimation involves estimating two channels for the user-RIS (UE-RIS) and RIS-base station (RIS-BS) links. In the literature, two approaches are proposed: (i) cascaded channel estimation where the two channels are collapsed into a single one and estimated using training signals at the BS, and (ii) separate channel estimation that estimates each channel separately either in a passive or semi-passive RIS setting. In this work, we study the separate channel estimation problem in a fully passive RIS-aided millimeter-wave (mmWave) single-user single-input multiple-output (SIMO) communication system. First, we adopt a variational-inference (VI) approach to jointly estimate the UE-RIS and RIS-BS instantaneous channel state information (I-CSI). In particular, auxiliary posterior distributions of the I-CSI are learned through the maximization of the evidence lower bound. However, estimating the I-CSI for both links in every coherence block results in a high signaling overhead to control the RIS in scenarios with highly mobile users. Thus, we extend our first approach to estimate the slow-varying statistical CSI of the UE-RIS link overcoming the highly variant I-CSI. Precisely, our second method estimates the I-CSI of RIS-BS channel and the UE-RIS channel covariance matrix (CCM) directly from the uplink training signals in a fully passive RIS-aided system. The simulation results demonstrate that using maximum a posteriori channel estimation using the auxiliary posteriors can provide a capacity that approaches the capacity with perfect CSI.


CeBed: A Benchmark for Deep Data-Driven OFDM Channel Estimation

arXiv.org Artificial Intelligence

Deep learning has been extensively used in wireless communication problems, including channel estimation. Although several data-driven approaches exist, a fair and realistic comparison between them is difficult due to inconsistencies in the experimental conditions and the lack of a standardized experimental design. In addition, the performance of data-driven approaches is often compared based on empirical analysis. The lack of reproducibility and availability of standardized evaluation tools (e.g., datasets, codebases) hinder the development and progress of data-driven methods for channel estimation and wireless communication in general. In this work, we introduce an initiative to build benchmarks that unify several data-driven OFDM channel estimation approaches. Specifically, we present CeBed (a testbed for channel estimation) including different datasets covering various systems models and propagation conditions along with the implementation of ten deep and traditional baselines. This benchmark considers different practical aspects such as the robustness of the data-driven models, the number and the arrangement of pilots, and the number of receive antennas. This work offers a comprehensive and unified framework to help researchers evaluate and design data-driven channel estimation algorithms.


Domain Generalization in Machine Learning Models for Wireless Communications: Concepts, State-of-the-Art, and Open Issues

arXiv.org Artificial Intelligence

Data-driven machine learning (ML) is promoted as one potential technology to be used in next-generations wireless systems. This led to a large body of research work that applies ML techniques to solve problems in different layers of the wireless transmission link. However, most of these applications rely on supervised learning which assumes that the source (training) and target (test) data are independent and identically distributed (i.i.d). This assumption is often violated in the real world due to domain or distribution shifts between the source and the target data. Thus, it is important to ensure that these algorithms generalize to out-of-distribution (OOD) data. In this context, domain generalization (DG) tackles the OOD-related issues by learning models on different and distinct source domains/datasets with generalization capabilities to unseen new domains without additional finetuning. Motivated by the importance of DG requirements for wireless applications, we present a comprehensive overview of the recent developments in DG and the different sources of domain shift. We also summarize the existing DG methods and review their applications in selected wireless communication problems, and conclude with insights and open questions.


Hacking Google reCAPTCHA v3 using Reinforcement Learning

arXiv.org Artificial Intelligence

We present a Reinforcement Learning (RL) methodology to bypass Google reCAPTCHA v3. We formulate the problem as a grid world where the agent learns how to move the mouse and click on the reCAPTCHA button to receive a high score. We study the performance of the agent when we vary the cell size of the grid world and show that the performance drops when the agent takes big steps toward the goal. Finally, we used a divide and conquer strategy to defeat the reCAPTCHA system for any grid resolution. Our proposed method achieves a success rate of 97.4% on a 100x100 grid and 96.7% on a 1000x1000 screen resolution.