Goto

Collaborating Authors

 Feng, Yue


ChatGPT vs. Google: A Comparative Study of Search Performance and User Experience

arXiv.org Artificial Intelligence

The advent of ChatGPT, a large language model-powered chatbot, has prompted questions about its potential implications for traditional search engines. In this study, we investigate the differences in user behavior when employing search engines and chatbot tools for information-seeking tasks. We carry out a randomized online experiment, dividing participants into two groups: one using a ChatGPT-like tool and the other using a Google Search-like tool. Our findings reveal that the ChatGPT group consistently spends less time on all tasks, with no significant difference in overall task performance between the groups. Notably, ChatGPT levels user search performance across different education levels and excels in answering straightforward questions and providing general solutions but falls short in fact-checking tasks. Users perceive ChatGPT's responses as having higher information quality compared to Google Search, despite displaying a similar level of trust in both tools. Furthermore, participants using ChatGPT report significantly better user experiences in terms of usefulness, enjoyment, and satisfaction, while perceived ease of use remains comparable between the two tools. However, ChatGPT may also lead to overreliance and generate or replicate misinformation, yielding inconsistent results. Our study offers valuable insights for search engine management and highlights opportunities for integrating chatbot technologies into search engine designs.


Schema-Guided User Satisfaction Modeling for Task-Oriented Dialogues

arXiv.org Artificial Intelligence

User Satisfaction Modeling (USM) is one of the popular choices for task-oriented dialogue systems evaluation, where user satisfaction typically depends on whether the user's task goals were fulfilled by the system. Task-oriented dialogue systems use task schema, which is a set of task attributes, to encode the user's task goals. Existing studies on USM neglect explicitly modeling the user's task goals fulfillment using the task schema. In this paper, we propose SG-USM, a novel schema-guided user satisfaction modeling framework. It explicitly models the degree to which the user's preferences regarding the task attributes are fulfilled by the system for predicting the user's satisfaction level. SG-USM employs a pre-trained language model for encoding dialogue context and task attributes. Further, it employs a fulfillment representation layer for learning how many task attributes have been fulfilled in the dialogue, an importance predictor component for calculating the importance of task attributes. Finally, it predicts the user satisfaction based on task attribute fulfillment and task attribute importance. Experimental results on benchmark datasets (i.e. MWOZ, SGD, ReDial, and JDDC) show that SG-USM consistently outperforms competitive existing methods. Our extensive analysis demonstrates that SG-USM can improve the interpretability of user satisfaction modeling, has good scalability as it can effectively deal with unseen tasks and can also effectively work in low-resource settings by leveraging unlabeled data.


Towards Asking Clarification Questions for Information Seeking on Task-Oriented Dialogues

arXiv.org Artificial Intelligence

Task-oriented dialogue systems aim at providing users with task-specific services. Users of such systems often do not know all the information about the task they are trying to accomplish, requiring them to seek information about the task. To provide accurate and personalized task-oriented information seeking results, task-oriented dialogue systems need to address two potential issues: 1) users' inability to describe their complex information needs in their requests; and 2) ambiguous/missing information the system has about the users. In this paper, we propose a new Multi-Attention Seq2Seq Network, named MAS2S, which can ask questions to clarify the user's information needs and the user's profile in task-oriented information seeking. We also extend an existing dataset for task-oriented information seeking, leading to the \ourdataset which contains about 100k task-oriented information seeking dialogues that are made publicly available\footnote{Dataset and code is available at \href{https://github.com/sweetalyssum/clarit}{https://github.com/sweetalyssum/clarit}.}. Experimental results on \ourdataset show that MAS2S outperforms baselines on both clarification question generation and answer prediction.


A Graph-Guided Reasoning Approach for Open-ended Commonsense Question Answering

arXiv.org Artificial Intelligence

Recently, end-to-end trained models for multiple-choice commonsense question answering (QA) have delivered promising results. However, such question-answering systems cannot be directly applied in real-world scenarios where answer candidates are not provided. Hence, a new benchmark challenge set for open-ended commonsense reasoning (OpenCSR) has been recently released, which contains natural science questions without any predefined choices. On the OpenCSR challenge set, many questions require implicit multi-hop reasoning and have a large decision space, reflecting the difficult nature of this task. Existing work on OpenCSR sorely focuses on improving the retrieval process, which extracts relevant factual sentences from a textual knowledge base, leaving the important and non-trivial reasoning task outside the scope. In this work, we extend the scope to include a reasoner that constructs a question-dependent open knowledge graph based on retrieved supporting facts and employs a sequential subgraph reasoning process to predict the answer. The subgraph can be seen as a concise and compact graphical explanation of the prediction. Experiments on two OpenCSR datasets show that the proposed model achieves great performance on benchmark OpenCSR datasets.


Topic-Aware Response Generation in Task-Oriented Dialogue with Unstructured Knowledge Access

arXiv.org Artificial Intelligence

To alleviate the problem of structured databases' limited coverage, recent task-oriented dialogue systems incorporate external unstructured knowledge to guide the generation of system responses. However, these usually use word or sentence level similarities to detect the relevant knowledge context, which only partially capture the topical level relevance. In this paper, we examine how to better integrate topical information in knowledge grounded task-oriented dialogue and propose ``Topic-Aware Response Generation'' (TARG), an end-to-end response generation model. TARG incorporates multiple topic-aware attention mechanisms to derive the importance weighting scheme over dialogue utterances and external knowledge sources towards a better understanding of the dialogue history. Experimental results indicate that TARG achieves state-of-the-art performance in knowledge selection and response generation, outperforming previous state-of-the-art by 3.2, 3.6, and 4.2 points in EM, F1 and BLEU-4 respectively on Doc2Dial, and performing comparably with previous work on DSTC9; both being knowledge-grounded task-oriented dialogue datasets.


A Sequence-to-Sequence Approach to Dialogue State Tracking

arXiv.org Artificial Intelligence

This paper is concerned with dialogue state tracking (DST) in a task-oriented dialogue system. Significant progress has been achieved recently on the development of DST technologies. However, building a DST module that is scalable and effective is still a challenging issue. This paper proposes a new approach to dialogue state tracking, referred to as Seq2Seq-DU, which formalizes DST as a sequence-to-sequence problem. It employs two BERT-based encoders to respectively encode the utterances in the dialogue and the descriptions of schemas, an attender to calculate attentions between the utterance embeddings and the schema embeddings, and a decoder to generate pointers to represent the current state of dialogue. Seq2Seq-DU has the following advantages. It can jointly model the relations between intents, slots, and slot values; it can utilize rich language representations of utterances and schemas; it can effectively deal with categorical slots, non-categorical slots, and unseen schemas. In addition, Seq2Seq-DU can also be used in the NLU (natural language understanding) module of a dialogue system. Experimental results on benchmark datasets in different settings (SGD, MultiWOZ2.2, WOZ2.0, DSTC2, M2M, SNIPS, and ATIS) show that Seq2Seq-DU outperforms the existing methods.


Logician: A Unified End-to-End Neural Approach for Open-Domain Information Extraction

arXiv.org Artificial Intelligence

In this paper, we consider the problem of open information extraction (OIE) for extracting entity and relation level intermediate structures from sentences in open-domain. We focus on four types of valuable intermediate structures (Relation, Attribute, Description, and Concept), and propose a unified knowledge expression form, SAOKE, to express them. We publicly release a data set which contains more than forty thousand sentences and the corresponding facts in the SAOKE format labeled by crowd-sourcing. To our knowledge, this is the largest publicly available human labeled data set for open information extraction tasks. Using this labeled SAOKE data set, we train an end-to-end neural model using the sequenceto-sequence paradigm, called Logician, to transform sentences into facts. For each sentence, different to existing algorithms which generally focus on extracting each single fact without concerning other possible facts, Logician performs a global optimization over all possible involved facts, in which facts not only compete with each other to attract the attention of words, but also cooperate to share words. An experimental study on various types of open domain relation extraction tasks reveals the consistent superiority of Logician to other states-of-the-art algorithms. The experiments verify the reasonableness of SAOKE format, the valuableness of SAOKE data set, the effectiveness of the proposed Logician model, and the feasibility of the methodology to apply end-to-end learning paradigm on supervised data sets for the challenging tasks of open information extraction.