Goto

Collaborating Authors

 Feng, Yuan


OLMD: Orientation-aware Long-term Motion Decoupling for Continuous Sign Language Recognition

arXiv.org Artificial Intelligence

The primary challenge in continuous sign language recognition (CSLR) mainly stems from the presence of multi-orientational and long-term motions. However, current research overlooks these crucial aspects, significantly impacting accuracy. To tackle these issues, we propose a novel CSLR framework: Orientation-aware Long-term Motion Decoupling (OLMD), which efficiently aggregates long-term motions and decouples multi-orientational signals into easily interpretable components. Specifically, our innovative Long-term Motion Aggregation (LMA) module filters out static redundancy while adaptively capturing abundant features of long-term motions. We further enhance orientation awareness by decoupling complex movements into horizontal and vertical components, allowing for motion purification in both orientations. Additionally, two coupling mechanisms are proposed: stage and cross-stage coupling, which together enrich multi-scale features and improve the generalization capabilities of the model. Experimentally, OLMD shows SOTA performance on three large-scale datasets: PHOENIX14, PHOENIX14-T, and CSL-Daily. Notably, we improved the word error rate (WER) on PHOENIX14 by an absolute 1.6% compared to the previous SOTA


Path Pooling: Train-Free Structure Enhancement for Efficient Knowledge Graph Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

Although Large Language Models achieve strong success in many tasks, they still suffer from hallucinations and knowledge deficiencies in real-world applications. Many knowledge graph-based retrieval-augmented generation (KG-RAG) methods enhance the quality and credibility of LLMs by leveraging structure and semantic information in KGs as external knowledge bases. However, these methods struggle to effectively incorporate structure information, either incurring high computational costs or underutilizing available knowledge. Inspired by smoothing operations in graph representation learning, we propose path pooling, a simple, train-free strategy that introduces structure information through a novel path-centric pooling operation. It seamlessly integrates into existing KG-RAG methods in a plug-and-play manner, enabling richer structure information utilization. Extensive experiments demonstrate that incorporating the path pooling into the state-of-the-art KG-RAG method consistently improves performance across various settings while introducing negligible additional cost. Code is coming soon at https://github.com/hrwang00/path-pooling.


Identify Critical KV Cache in LLM Inference from an Output Perturbation Perspective

arXiv.org Artificial Intelligence

Large language models have revolutionized natural language processing but face significant challenges of high storage and runtime costs, due to the transformer architecture's reliance on self-attention, particularly the large Key-Value (KV) cache for long-sequence inference. Recent efforts to reduce KV cache size by pruning less critical entries based on attention weights remain empirical and lack formal grounding. This paper presents a formal study on identifying critical KV cache entries by analyzing attention output perturbation. Our analysis reveals that, beyond attention weights, the value states within KV entries and pretrained parameter matrices are also crucial. Based on this, we propose a perturbation-constrained selection algorithm that optimizes the worst-case output perturbation to identify critical entries. Evaluations on the Needle-in-a-Haystack test and Longbench benchmark show our algorithm enhances state-of-the-art cache eviction methods. Further empirical analysis confirms that our algorithm achieves lower output perturbations in over 92% attention heads in Llama model, thereby providing a significant improvement over existing methods.


FRAG: A Flexible Modular Framework for Retrieval-Augmented Generation based on Knowledge Graphs

arXiv.org Artificial Intelligence

To mitigate the hallucination and knowledge deficiency in large language models (LLMs), Knowledge Graph (KG)-based Retrieval-Augmented Generation (RAG) has shown promising potential by utilizing KGs as external resource to enhance LLMs reasoning. However, existing KG-RAG approaches struggle with a trade-off between flexibility and retrieval quality. Modular methods prioritize flexibility by avoiding the use of KG-fine-tuned models during retrieval, leading to fixed retrieval strategies and suboptimal retrieval quality. Conversely, coupled methods embed KG information within models to improve retrieval quality, but at the expense of flexibility. In this paper, we propose a novel flexible modular KG-RAG framework, termed FRAG, which synergizes the advantages of both approaches. FRAG estimates the hop range of reasoning paths based solely on the query and classify it as either simple or complex. To match the complexity of the query, tailored pipelines are applied to ensure efficient and accurate reasoning path retrieval, thus fostering the final reasoning process. By using the query text instead of the KG to infer the structural information of reasoning paths and employing adaptable retrieval strategies, FRAG improves retrieval quality while maintaining flexibility. Moreover, FRAG does not require extra LLMs fine-tuning or calls, significantly boosting efficiency and conserving resources. Extensive experiments show that FRAG achieves state-of-the-art performance with high efficiency and low resource consumption.


3rd Workshop on Maritime Computer Vision (MaCVi) 2025: Challenge Results

arXiv.org Artificial Intelligence

The 3rd Workshop on Maritime Computer Vision (MaCVi) 2025 addresses maritime computer vision for Unmanned Surface Vehicles (USV) and underwater. This report offers a comprehensive overview of the findings from the challenges. We provide both statistical and qualitative analyses, evaluating trends from over 700 submissions. All datasets, evaluation code, and the leaderboard are available to the public at https://macvi.org/workshop/macvi25.


Optimizing KV Cache Eviction in LLMs: Adaptive Allocation for Enhanced Budget Utilization

arXiv.org Artificial Intelligence

Large Language Models have excelled in various fields but encounter efficiency limitations due to the extensive KV cache required for long sequences inference. Many efforts try to evict non-critical cache elements during runtime, thereby reducing cache size within a given memory budget while preserving generation quality. Our reexamination of their underlying principles discerns that prevailing strategies essentially aim to minimize an upper bound of eviction loss within a specific budget allocation. However, we observe that the current practice of uniformly allocating budgets across different attention heads during the eviction procedure tends to degrade the quality of generation posten-eviction. In light of these findings, we propose a simple yet effective adaptive allocation algorithm that not only theoretically ensures its loss upper bound does not exceed that of previous uniform allocation methods, but also effectively aligns with the characteristics of the self-attention mechanism, thus practically reducing the upper bound. Further, integrating this algorithm with two of the most advanced methods yields Ada-SnapKV and Ada-Pyramid. Extensive experimental validation across 16 datasets and the Needle-in-a-Haystack test confirm that Ada-SnapKV and Ada-Pyramid achieve further enhancements, establishing new benchmarks in state-of-the-art performance.


Driving Intelligent IoT Monitoring and Control through Cloud Computing and Machine Learning

arXiv.org Artificial Intelligence

This article explores how to drive intelligent iot monitoring and control through cloud computing and machine learning. As iot and the cloud continue to generate large and diverse amounts of data as sensor devices in the network, the collected data is sent to the cloud for statistical analysis, prediction, and data analysis to achieve business objectives. However, because the cloud computing model is limited by distance, it can be problematic in environments where the quality of the Internet connection is not ideal for critical operations. Therefore, edge computing, as a distributed computing architecture, moves the location of processing applications, data and services from the central node of the network to the logical edge node of the network to reduce the dependence on cloud processing and analysis of data, and achieve near-end data processing and analysis. The combination of iot and edge computing can reduce latency, improve efficiency, and enhance security, thereby driving the development of intelligent systems. The paper also introduces the development of iot monitoring and control technology, the application of edge computing in iot monitoring and control, and the role of machine learning in data analysis and fault detection. Finally, the application and effect of intelligent Internet of Things monitoring and control system in industry, agriculture, medical and other fields are demonstrated through practical cases and experimental studies.


Leveraging Federated Learning and Edge Computing for Recommendation Systems within Cloud Computing Networks

arXiv.org Artificial Intelligence

To enable large-scale and efficient deployment of artificial intelligence (AI), the combination of AI and edge computing has spawned Edge Intelligence, which leverages the computing and communication capabilities of end devices and edge servers to process data closer to where it is generated. A key technology for edge intelligence is the privacy-protecting machine learning paradigm known as Federated Learning (FL), which enables data owners to train models without having to transfer raw data to third-party servers. However, FL networks are expected to involve thousands of heterogeneous distributed devices. As a result, communication efficiency remains a key bottleneck. To reduce node failures and device exits, a Hierarchical Federated Learning (HFL) framework is proposed, where a designated cluster leader supports the data owner through intermediate model aggregation. Therefore, based on the improvement of edge server resource utilization, this paper can effectively make up for the limitation of cache capacity. In order to mitigate the impact of soft clicks on the quality of user experience (QoE), the authors model the user QoE as a comprehensive system cost. To solve the formulaic problem, the authors propose a decentralized caching algorithm with federated deep reinforcement learning (DRL) and federated learning (FL), where multiple agents learn and make decisions independently


The 2nd Workshop on Maritime Computer Vision (MaCVi) 2024

arXiv.org Artificial Intelligence

The 2nd Workshop on Maritime Computer Vision (MaCVi) 2024 addresses maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicles (USV). Three challenges categories are considered: (i) UAV-based Maritime Object Tracking with Re-identification, (ii) USV-based Maritime Obstacle Segmentation and Detection, (iii) USV-based Maritime Boat Tracking. The USV-based Maritime Obstacle Segmentation and Detection features three sub-challenges, including a new embedded challenge addressing efficicent inference on real-world embedded devices. This report offers a comprehensive overview of the findings from the challenges. We provide both statistical and qualitative analyses, evaluating trends from over 195 submissions. All datasets, evaluation code, and the leaderboard are available to the public at https://macvi.org/workshop/macvi24.


AttMEMO : Accelerating Transformers with Memoization on Big Memory Systems

arXiv.org Artificial Intelligence

Transformer models gain popularity because of their superior inference accuracy and inference throughput. However, the transformer is computation-intensive, causing a long inference time. The existing works on transformer inference acceleration have limitations caused by either the modification of transformer architectures or the need of specialized hardware. In this paper, we identify the opportunities of using memoization to accelerate the self-attention mechanism in transformers without the above limitations. Built upon a unique observation that there is rich similarity in attention computation across inference sequences, we build a memoization database that leverages the emerging big memory system. We introduce a novel embedding technique to find semantically similar inputs to identify computation similarity. We also introduce a series of techniques such as memory mapping and selective memoization to avoid memory copy and unnecessary overhead. We enable 22% inference-latency reduction on average (up to 68%) with negligible loss in inference accuracy.