Feng, Ying
Fast White-Box Adversarial Streaming Without a Random Oracle
Feng, Ying, Jain, Aayush, Woodruff, David P.
Recently, the question of adversarially robust streaming, where the stream is allowed to depend on the randomness of the streaming algorithm, has gained a lot of attention. In this work, we consider a strong white-box adversarial model (Ajtai et al. PODS 2022), in which the adversary has access to all past random coins and the parameters used by the streaming algorithm. We focus on the sparse recovery problem and extend our result to other tasks such as distinct element estimation and low-rank approximation of matrices and tensors. The main drawback of previous work is that it requires a random oracle, which is especially problematic in the streaming model since the amount of randomness is counted in the space complexity of a streaming algorithm. Also, the previous work suffers from large update time. We construct a near-optimal solution for the sparse recovery problem in white-box adversarial streams, based on the subexponentially secure Learning with Errors assumption. Importantly, our solution does not require a random oracle and has a polylogarithmic per item processing time. We also give results in a related white-box adversarially robust distributed model. Our constructions are based on homomorphic encryption schemes satisfying very mild structural properties that are currently satisfied by most known schemes.
A Real-Time Rescheduling Algorithm for Multi-robot Plan Execution
Feng, Ying, Paul, Adittyo, Chen, Zhe, Li, Jiaoyang
One area of research in multi-agent path finding is to determine how replanning can be efficiently achieved in the case of agents being delayed during execution. One option is to reschedule the passing order of agents, i.e., the sequence in which agents visit the same location. In response, we propose Switchable-Edge Search (SES), an A*-style algorithm designed to find optimal passing orders. We prove the optimality of SES and evaluate its efficiency via simulations. The best variant of SES takes less than 1 second for small- and medium-sized problems and runs up to 4 times faster than baselines for large-sized problems.
Composition based oxidation state prediction of materials using deep learning
Fu, Nihang, Hu, Jeffrey, Feng, Ying, Morrison, Gregory, Loye, Hans-Conrad zur, Hu, Jianjun
Oxidation states are the charges of atoms after their ionic approximation of their bonds, which have been widely used in charge-neutrality verification, crystal structure determination, and reaction estimation. Currently only heuristic rules exist for guessing the oxidation states of a given compound with many exceptions. Recent work has developed machine learning models based on heuristic structural features for predicting the oxidation states of metal ions. However, composition based oxidation state prediction still remains elusive so far, which is more important in new material discovery for which the structures are not even available. This work proposes a novel deep learning based BERT transformer language model BERTOS for predicting the oxidation states of all elements of inorganic compounds given only their chemical composition. Oxidation states (OS) are the charges of atoms after their ionic approximation of their bonds, which are the fundamental attributes of elements that help to explain redox reactions, reactivity, chemical bonding, and chemical properties of different elements and compounds. In electrochemistry, oxidation states are used to represent relevant compounds and ions in Latimer and Frost diagrams, and they can also be used to calculate the charge neutrality of chemical compounds to screen potential hypothetical materials generated by computational design algorithms. Oxidation states have also been used to study the complexes of transition metals.
Hallucinated Neural Radiance Fields in the Wild
Chen, Xingyu, Zhang, Qi, Li, Xiaoyu, Chen, Yue, Feng, Ying, Wang, Xuan, Wang, Jue
Neural Radiance Fields (NeRF) has recently gained popularity for its impressive novel view synthesis ability. This paper studies the problem of hallucinated NeRF: i.e. recovering a realistic NeRF at a different time of day from a group of tourism images. Existing solutions adopt NeRF with a controllable appearance embedding to render novel views under various conditions, but cannot render view-consistent images with an unseen appearance. To solve this problem, we present an end-to-end framework for constructing a hallucinated NeRF, dubbed as Ha-NeRF. Specifically, we propose an appearance hallucination module to handle time-varying appearances and transfer them to novel views. Considering the complex occlusions of tourism images, an anti-occlusion module is introduced to decompose the static subjects for visibility accurately. Experimental results on synthetic data and real tourism photo collections demonstrate that our method can not only hallucinate the desired appearances, but also render occlusion-free images from different views. The project and supplementary materials are available at https://rover-xingyu.github.io/Ha-NeRF/.