Feng, Yao
PRIMAL: Physically Reactive and Interactive Motor Model for Avatar Learning
Zhang, Yan, Feng, Yao, Cseke, Alpár, Saini, Nitin, Bajandas, Nathan, Heron, Nicolas, Black, Michael J.
To build a motor system of the interactive avatar, it is essential to develop a generative motion model drives the body to move through 3D space in a perpetual, realistic, controllable, and responsive manner. Although motion generation has been extensively studied, most methods do not support ``embodied intelligence'' due to their offline setting, slow speed, limited motion lengths, or unnatural movements. To overcome these limitations, we propose PRIMAL, an autoregressive diffusion model that is learned with a two-stage paradigm, inspired by recent advances in foundation models. In the pretraining stage, the model learns motion dynamics from a large number of sub-second motion segments, providing ``motor primitives'' from which more complex motions are built. In the adaptation phase, we employ a ControlNet-like adaptor to fine-tune the motor control for semantic action generation and spatial target reaching. Experiments show that physics effects emerge from our training. Given a single-frame initial state, our model not only generates unbounded, realistic, and controllable motion, but also enables the avatar to be responsive to induced impulses in real time. In addition, we can effectively and efficiently adapt our base model to few-shot personalized actions and the task of spatial control. Evaluations show that our proposed method outperforms state-of-the-art baselines. We leverage the model to create a real-time character animation system in Unreal Engine that is highly responsive and natural. Code, models, and more results are available at: https://yz-cnsdqz.github.io/eigenmotion/PRIMAL
Self-Consistent Model-based Adaptation for Visual Reinforcement Learning
Zhou, Xinning, Ying, Chengyang, Feng, Yao, Su, Hang, Zhu, Jun
Visual reinforcement learning agents typically face serious performance declines in real-world applications caused by visual distractions. Existing methods rely on fine-tuning the policy's representations with hand-crafted augmentations. In this work, we propose Self-Consistent Model-based Adaptation (SCMA), a novel method that fosters robust adaptation without modifying the policy. By transferring cluttered observations to clean ones with a denoising model, SCMA can mitigate distractions for various policies as a plug-and-play enhancement. To optimize the denoising model in an unsupervised manner, we derive an unsupervised distribution matching objective with a theoretical analysis of its optimality. We further present a practical algorithm to optimize the objective by estimating the distribution of clean observations with a pre-trained world model. Extensive experiments on multiple visual generalization benchmarks and real robot data demonstrate that SCMA effectively boosts performance across various distractions and exhibits better sample efficiency.
ChatHuman: Language-driven 3D Human Understanding with Retrieval-Augmented Tool Reasoning
Lin, Jing, Feng, Yao, Liu, Weiyang, Black, Michael J.
Numerous methods have been proposed to detect, estimate, and analyze properties of people in images, including the estimation of 3D pose, shape, contact, human-object interaction, emotion, and more. Each of these methods works in isolation instead of synergistically. Here we address this problem and build a language-driven human understanding system -- ChatHuman, which combines and integrates the skills of many different methods. To do so, we finetune a Large Language Model (LLM) to select and use a wide variety of existing tools in response to user inputs. In doing so, ChatHuman is able to combine information from multiple tools to solve problems more accurately than the individual tools themselves and to leverage tool output to improve its ability to reason about humans. The novel features of ChatHuman include leveraging academic publications to guide the application of 3D human-related tools, employing a retrieval-augmented generation model to generate in-context-learning examples for handling new tools, and discriminating and integrating tool results to enhance 3D human understanding. Our experiments show that ChatHuman outperforms existing models in both tool selection accuracy and performance across multiple 3D human-related tasks. ChatHuman is a step towards consolidating diverse methods for human analysis into a single, powerful, system for 3D human reasoning.
Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization
Liu, Weiyang, Qiu, Zeju, Feng, Yao, Xiu, Yuliang, Xue, Yuxuan, Yu, Longhui, Feng, Haiwen, Liu, Zhen, Heo, Juyeon, Peng, Songyou, Wen, Yandong, Black, Michael J., Weller, Adrian, Schölkopf, Bernhard
Large foundation models are becoming ubiquitous, but training them from scratch is prohibitively expensive. Thus, efficiently adapting these powerful models to downstream tasks is increasingly important. In this paper, we study a principled finetuning paradigm -- Orthogonal Finetuning (OFT) -- for downstream task adaptation. Despite demonstrating good generalizability, OFT still uses a fairly large number of trainable parameters due to the high dimensionality of orthogonal matrices. To address this, we start by examining OFT from an information transmission perspective, and then identify a few key desiderata that enable better parameter-efficiency. Inspired by how the Cooley-Tukey fast Fourier transform algorithm enables efficient information transmission, we propose an efficient orthogonal parameterization using butterfly structures. We apply this parameterization to OFT, creating a novel parameter-efficient finetuning method, called Orthogonal Butterfly (BOFT). By subsuming OFT as a special case, BOFT introduces a generalized orthogonal finetuning framework. Finally, we conduct an extensive empirical study of adapting large vision transformers, large language models, and text-to-image diffusion models to various downstream tasks in vision and language.
Controlling Text-to-Image Diffusion by Orthogonal Finetuning
Qiu, Zeju, Liu, Weiyang, Feng, Haiwen, Xue, Yuxuan, Feng, Yao, Liu, Zhen, Zhang, Dan, Weller, Adrian, Schölkopf, Bernhard
Large text-to-image diffusion models have impressive capabilities in generating photorealistic images from text prompts. How to effectively guide or control these powerful models to perform different downstream tasks becomes an important open problem. To tackle this challenge, we introduce a principled finetuning method -- Orthogonal Finetuning (OFT), for adapting text-to-image diffusion models to downstream tasks. Unlike existing methods, OFT can provably preserve hyperspherical energy which characterizes the pairwise neuron relationship on the unit hypersphere. We find that this property is crucial for preserving the semantic generation ability of text-to-image diffusion models. To improve finetuning stability, we further propose Constrained Orthogonal Finetuning (COFT) which imposes an additional radius constraint to the hypersphere. Specifically, we consider two important finetuning text-to-image tasks: subject-driven generation where the goal is to generate subject-specific images given a few images of a subject and a text prompt, and controllable generation where the goal is to enable the model to take in additional control signals. We empirically show that our OFT framework outperforms existing methods in generation quality and convergence speed.
Ghost on the Shell: An Expressive Representation of General 3D Shapes
Liu, Zhen, Feng, Yao, Xiu, Yuliang, Liu, Weiyang, Paull, Liam, Black, Michael J., Schölkopf, Bernhard
The creation of photorealistic virtual worlds requires the accurate modeling of 3D surface geometry for a wide range of objects. For this, meshes are appealing since they 1) enable fast physics-based rendering with realistic material and lighting, 2) support physical simulation, and 3) are memory-efficient for modern graphics pipelines. Recent work on reconstructing and statistically modeling 3D shape, however, has critiqued meshes as being topologically inflexible. To capture a wide range of object shapes, any 3D representation must be able to model solid, watertight, shapes as well as thin, open, surfaces. Recent work has focused on the former, and methods for reconstructing open surfaces do not support fast reconstruction with material and lighting or unconditional generative modelling. Inspired by the observation that open surfaces can be seen as islands floating on watertight surfaces, we parameterize open surfaces by defining a manifold signed distance field on watertight templates. With this parameterization, we further develop a grid-based and differentiable representation that parameterizes both watertight and non-watertight meshes of arbitrary topology. Our new representation, called Ghost-on-the-Shell (G-Shell), enables two important applications: differentiable rasterization-based reconstruction from multiview images and generative modelling of non-watertight meshes. We empirically demonstrate that G-Shell achieves state-of-the-art performance on non-watertight mesh reconstruction and generation tasks, while also performing effectively for watertight meshes.
Pairwise Similarity Learning is SimPLE
Wen, Yandong, Liu, Weiyang, Feng, Yao, Raj, Bhiksha, Singh, Rita, Weller, Adrian, Black, Michael J., Schölkopf, Bernhard
In this paper, we focus on a general yet important learning problem, pairwise similarity learning (PSL). PSL subsumes a wide range of important applications, such as open-set face recognition, speaker verification, image retrieval and person re-identification. The goal of PSL is to learn a pairwise similarity function assigning a higher similarity score to positive pairs (i.e., a pair of samples with the same label) than to negative pairs (i.e., a pair of samples with different label). We start by identifying a key desideratum for PSL, and then discuss how existing methods can achieve this desideratum. We then propose a surprisingly simple proxy-free method, called SimPLE, which requires neither feature/proxy normalization nor angular margin and yet is able to generalize well in open-set recognition. We apply the proposed method to three challenging PSL tasks: open-set face recognition, image retrieval and speaker verification. Comprehensive experimental results on large-scale benchmarks show that our method performs significantly better than current state-of-the-art methods.
Learning Disentangled Avatars with Hybrid 3D Representations
Feng, Yao, Liu, Weiyang, Bolkart, Timo, Yang, Jinlong, Pollefeys, Marc, Black, Michael J.
Tremendous efforts have been made to learn animatable and photorealistic human avatars. Towards this end, both explicit and implicit 3D representations are heavily studied for a holistic modeling and capture of the whole human (e.g., body, clothing, face and hair), but neither representation is an optimal choice in terms of representation efficacy since different parts of the human avatar have different modeling desiderata. For example, meshes are generally not suitable for modeling clothing and hair. Motivated by this, we present Disentangled Avatars~(DELTA), which models humans with hybrid explicit-implicit 3D representations. DELTA takes a monocular RGB video as input, and produces a human avatar with separate body and clothing/hair layers. Specifically, we demonstrate two important applications for DELTA. For the first one, we consider the disentanglement of the human body and clothing and in the second, we disentangle the face and hair. To do so, DELTA represents the body or face with an explicit mesh-based parametric 3D model and the clothing or hair with an implicit neural radiance field. To make this possible, we design an end-to-end differentiable renderer that integrates meshes into volumetric rendering, enabling DELTA to learn directly from monocular videos without any 3D supervision. Finally, we show that how these two applications can be easily combined to model full-body avatars, such that the hair, face, body and clothing can be fully disentangled yet jointly rendered. Such a disentanglement enables hair and clothing transfer to arbitrary body shapes. We empirically validate the effectiveness of DELTA's disentanglement by demonstrating its promising performance on disentangled reconstruction, virtual clothing try-on and hairstyle transfer. To facilitate future research, we also release an open-sourced pipeline for the study of hybrid human avatar modeling.
MeshDiffusion: Score-based Generative 3D Mesh Modeling
Liu, Zhen, Feng, Yao, Black, Michael J., Nowrouzezahrai, Derek, Paull, Liam, Liu, Weiyang
We consider the task of generating realistic 3D shapes, which is useful for a variety of applications such as automatic scene generation and physical simulation. Compared to other 3D representations like voxels and point clouds, meshes are more desirable in practice, because (1) they enable easy and arbitrary manipulation of shapes for relighting and simulation, and (2) they can fully leverage the power of modern graphics pipelines which are mostly optimized for meshes. Previous scalable methods for generating meshes typically rely on sub-optimal post-processing, and they tend to produce overly-smooth or noisy surfaces without fine-grained geometric details. To overcome these shortcomings, we take advantage of the graph structure of meshes and use a simple yet very effective generative modeling method to generate 3D meshes. Specifically, we represent meshes with deformable tetrahedral grids, and then train a diffusion model on this direct parametrization. We demonstrate the effectiveness of our model on multiple generative tasks.
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Hao, Zhongkai, Liu, Songming, Zhang, Yichi, Ying, Chengyang, Feng, Yao, Su, Hang, Zhu, Jun
Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. By integrating the data and mathematical physics models seamlessly, it can guide the machine learning model towards solutions that are physically plausible, improving accuracy and efficiency even in uncertain and high-dimensional contexts. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from being fully explored in the field of physics-informed machine learning. We believe that the interdisciplinary research of physics-informed machine learning will significantly propel research progress, foster the creation of more effective machine learning models, and also offer invaluable assistance in addressing long-standing problems in related disciplines.