Goto

Collaborating Authors

 Feng, Yan


OpenGSL: A Comprehensive Benchmark for Graph Structure Learning

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have emerged as the de facto standard for representation learning on graphs, owing to their ability to effectively integrate graph topology and node attributes. However, the inherent suboptimal nature of node connections, resulting from the complex and contingent formation process of graphs, presents significant challenges in modeling them effectively. To tackle this issue, Graph Structure Learning (GSL), a family of data-centric learning approaches, has garnered substantial attention in recent years. The core concept behind GSL is to jointly optimize the graph structure and the corresponding GNN models. Despite the proposal of numerous GSL methods, the progress in this field remains unclear due to inconsistent experimental protocols, including variations in datasets, data processing techniques, and splitting strategies. In this paper, we introduce OpenGSL, the first comprehensive benchmark for GSL, aimed at addressing this gap. OpenGSL enables a fair comparison among state-of-the-art GSL methods by evaluating them across various popular datasets using uniform data processing and splitting strategies. Through extensive experiments, we observe that existing GSL methods do not consistently outperform vanilla GNN counterparts. We also find that there is no significant correlation between the homophily of the learned structure and task performance, challenging the common belief. Moreover, we observe that the learned graph structure demonstrates a strong generalization ability across different GNN models, despite the high computational and space consumption. We hope that our open-sourced library will facilitate rapid and equitable evaluation and inspire further innovative research in this field. The code of the benchmark can be found in https://github.com/OpenGSL/OpenGSL.


CDR: Conservative Doubly Robust Learning for Debiased Recommendation

arXiv.org Artificial Intelligence

In recommendation systems (RS), user behavior data is observational rather than experimental, resulting in widespread bias in the data. Consequently, tackling bias has emerged as a major challenge in the field of recommendation systems. Recently, Doubly Robust Learning (DR) has gained significant attention due to its remarkable performance and robust properties. However, our experimental findings indicate that existing DR methods are severely impacted by the presence of so-called Poisonous Imputation, where the imputation significantly deviates from the truth and becomes counterproductive. To address this issue, this work proposes Conservative Doubly Robust strategy (CDR) which filters imputations by scrutinizing their mean and variance. Theoretical analyses show that CDR offers reduced variance and improved tail bounds.In addition, our experimental investigations illustrate that CDR significantly enhances performance and can indeed reduce the frequency of poisonous imputation.


A data-driven approach to predict decision point choice during normal and evacuation wayfinding in multi-story buildings

arXiv.org Artificial Intelligence

Understanding pedestrian route choice behavior in complex buildings is important to ensure pedestrian safety. Previous studies have mostly used traditional data collection methods and discrete choice modeling to understand the influence of different factors on pedestrian route and exit choice, particularly in simple indoor environments. However, research on pedestrian route choice in complex buildings is still limited. This paper presents a data-driven approach for understanding and predicting the pedestrian decision point choice during normal and emergency wayfinding in a multi-story building. For this, we first built an indoor network representation and proposed a data mapping technique to map VR coordinates to the indoor representation. We then used a well-established machine learning algorithm, namely the random forest (RF) model to predict pedestrian decision point choice along a route during four wayfinding tasks in a multi-story building. Pedestrian behavioral data in a multi-story building was collected by a Virtual Reality experiment. The results show a much higher prediction accuracy of decision points using the RF model (i.e., 93% on average) compared to the logistic regression model. The highest prediction accuracy was 96% for task 3. Additionally, we tested the model performance combining personal characteristics and we found that personal characteristics did not affect decision point choice. This paper demonstrates the potential of applying a machine learning algorithm to study pedestrian route choice behavior in complex indoor buildings.


Statistical treatment of convolutional neural network super-resolution of inland surface wind for subgrid-scale variability quantification

arXiv.org Artificial Intelligence

Machine learning models have been employed to perform either physics-free data-driven or hybrid dynamical downscaling of climate data. Most of these implementations operate over relatively small downscaling factors because of the challenge of recovering fine-scale information from coarse data. This limits their compatibility with many global climate model outputs, often available between $\sim$50--100 km resolution, to scales of interest such as cloud resolving or urban scales. This study systematically examines the capability of convolutional neural networks (CNNs) to downscale surface wind speed data over land surface from different coarse resolutions (25 km, 48 km, and 100 km resolution) to 3 km. For each downscaling factor, we consider three CNN configurations that generate super-resolved predictions of fine-scale wind speed, which take between 1 to 3 input fields: coarse wind speed, fine-scale topography, and diurnal cycle. In addition to fine-scale wind speeds, probability density function parameters are generated, through which sample wind speeds can be generated accounting for the intrinsic stochasticity of wind speed. For generalizability assessment, CNN models are tested on regions with different topography and climate that are unseen during training. The evaluation of super-resolved predictions focuses on subgrid-scale variability and the recovery of extremes. Models with coarse wind and fine topography as inputs exhibit the best performance compared with other model configurations, operating across the same downscaling factor. Our diurnal cycle encoding results in lower out-of-sample generalizability compared with other input configurations.


Robust Sequence Networked Submodular Maximization

arXiv.org Artificial Intelligence

In this paper, we study the \underline{R}obust \underline{o}ptimization for \underline{se}quence \underline{Net}worked \underline{s}ubmodular maximization (RoseNets) problem. We interweave the robust optimization with the sequence networked submodular maximization. The elements are connected by a directed acyclic graph and the objective function is not submodular on the elements but on the edges in the graph. Under such networked submodular scenario, the impact of removing an element from a sequence depends both on its position in the sequence and in the network. This makes the existing robust algorithms inapplicable. In this paper, we take the first step to study the RoseNets problem. We design a robust greedy algorithm, which is robust against the removal of an arbitrary subset of the selected elements. The approximation ratio of the algorithm depends both on the number of the removed elements and the network topology. We further conduct experiments on real applications of recommendation and link prediction. The experimental results demonstrate the effectiveness of the proposed algorithm.


Generalizable Black-Box Adversarial Attack with Meta Learning

arXiv.org Artificial Intelligence

In the scenario of black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful adversarial perturbation based on query feedback under a query budget. Due to the limited feedback information, existing query-based black-box attack methods often require many queries for attacking each benign example. To reduce query cost, we propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability. Specifically, by treating the attack on each benign example as one task, we develop a meta-learning framework by training a meta-generator to produce perturbations conditioned on benign examples. When attacking a new benign example, the meta generator can be quickly fine-tuned based on the feedback information of the new task as well as a few historical attacks to produce effective perturbations. Moreover, since the meta-train procedure consumes many queries to learn a generalizable generator, we utilize model-level adversarial transferability to train the meta-generator on a white-box surrogate model, then transfer it to help the attack against the target model. The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance, which is verified by extensive experiments.


Online Adversarial Distillation for Graph Neural Networks

arXiv.org Artificial Intelligence

Knowledge distillation has recently become a popular technique to improve the model generalization ability on convolutional neural networks. However, its effect on graph neural networks is less than satisfactory since the graph topology and node attributes are likely to change in a dynamic way and in this case a static teacher model is insufficient in guiding student training. In this paper, we tackle this challenge by simultaneously training a group of graph neural networks in an online distillation fashion, where the group knowledge plays a role as a dynamic virtual teacher and the structure changes in graph neural networks are effectively captured. To improve the distillation performance, two types of knowledge are transferred among the students to enhance each other: local knowledge reflecting information in the graph topology and node attributes, and global knowledge reflecting the prediction over classes. We transfer the global knowledge with KL-divergence as the vanilla knowledge distillation does, while exploiting the complicated structure of the local knowledge with an efficient adversarial cyclic learning framework. Extensive experiments verified the effectiveness of our proposed online adversarial distillation approach.


Exploring the Connection between Knowledge Distillation and Logits Matching

arXiv.org Artificial Intelligence

Knowledge distillation is a generalized logits matching technique for model compression. Their equivalence is previously established on the condition of $\textit{infinity temperature}$ and $\textit{zero-mean normalization}$. In this paper, we prove that with only $\textit{infinity temperature}$, the effect of knowledge distillation equals to logits matching with an extra regularization. Furthermore, we reveal that an additional weaker condition -- $\textit{equal-mean initialization}$ rather than the original $\textit{zero-mean normalization}$ already suffices to set up the equivalence. The key to our proof is we realize that in modern neural networks with the cross-entropy loss and softmax activation, the mean of back-propagated gradient on logits always keeps zero.


Cross-Layer Distillation with Semantic Calibration

arXiv.org Artificial Intelligence

Recently proposed knowledge distillation approaches based on feature-map transfer validate that intermediate layers of a teacher model can serve as effective targets for training a student model to obtain better generalization ability. Existing studies mainly focus on particular representation forms for knowledge transfer between manually specified pairs of teacher-student intermediate layers. However, semantics of intermediate layers may vary in different networks and manual association of layers might lead to negative regularization caused by semantic mismatch between certain teacher-student layer pairs. To address this problem, we propose Semantic Calibration for Cross-layer Knowledge Distillation (SemCKD), which automatically assigns proper target layers of the teacher model for each student layer with an attention mechanism. With a learned attention distribution, each student layer distills knowledge contained in multiple layers rather than a single fixed intermediate layer from the teacher model for appropriate cross-layer supervision in training. Consistent improvements over state-of-the-art approaches are observed in extensive experiments with various network architectures for teacher and student models, demonstrating the effectiveness and flexibility of the proposed attention based soft layer association mechanism for cross-layer distillation.