Goto

Collaborating Authors

 Feng, Xiaoyi


DeepPerception: Advancing R1-like Cognitive Visual Perception in MLLMs for Knowledge-Intensive Visual Grounding

arXiv.org Artificial Intelligence

Human experts excel at fine-grained visual discrimination by leveraging domain knowledge to refine perceptual features, a capability that remains underdeveloped in current Multimodal Large Language Models (MLLMs). Despite possessing vast expert-level knowledge, MLLMs struggle to integrate reasoning into visual perception, often generating direct responses without deeper analysis. T o bridge this gap, we introduce knowledge-intensive visual grounding (KVG), a novel visual grounding task that requires both fine-grained perception and domain-specific knowledge integration. T o address the challenges of KVG, we propose DeepPerception, an MLLM enhanced with cognitive visual perception capabilities. Our approach consists of (1) an automated data synthesis pipeline that generates high-quality, knowledge-aligned training samples, and (2) a two-stage training framework combining supervised fine-tuning for cognitive reasoning scaffolding and reinforcement learning to optimize perception-cognition synergy. T o benchmark performance, we introduce KVG-Bench, a comprehensive dataset spanning 10 domains with 1.3K manually curated test cases. Experimental results demonstrate that DeepPerception significantly outperforms direct fine-tuning, achieving +8.08% accuracy improvements on KVG-Bench and exhibiting +4.60% superior cross-domain generalization over baseline approaches. Our findings highlight the importance of integrating cognitive processes into MLLMs for human-like visual perception and open new directions for multimodal reasoning research. The data, codes, and models are released at https://github.com/thunlp/


Zero-Shot Subject-Centric Generation for Creative Application Using Entropy Fusion

arXiv.org Artificial Intelligence

Generative models are widely used in visual content creation. However, current text-to-image models often face challenges in practical applications-such as textile pattern design and meme generation-due to the presence of unwanted elements that are difficult to separate with existing methods. Meanwhile, subject-reference generation has emerged as a key research trend, highlighting the need for techniques that can produce clean, high-quality subject images while effectively removing extraneous components. To address this challenge, we introduce a framework for reliable subject-centric image generation. In this work, we propose an entropy-based feature-weighted fusion method to merge the informative cross-attention features obtained from each sampling step of the pretrained text-to-image model FLUX, enabling a precise mask prediction and subject-centric generation. Additionally, we have developed an agent framework based on Large Language Models (LLMs) that translates users' casual inputs into more descriptive prompts, leading to highly detailed image generation. Simultaneously, the agents extract primary elements of prompts to guide the entropy-based feature fusion, ensuring focused primary element generation without extraneous components. Experimental results and user studies demonstrate our methods generates high-quality subject-centric images, outperform existing methods or other possible pipelines, highlighting the effectiveness of our approach.


Over-parameterization and Adversarial Robustness in Neural Networks: An Overview and Empirical Analysis

arXiv.org Artificial Intelligence

However, having a large parameter space is considered one of the main suspects of the neural networks' vulnerability to adversarial examples-- input samples crafted ad-hoc to induce a desired misclassification. Relevant literature has claimed contradictory remarks in support of and against the robustness of over-parameterized networks. These contradictory findings might be due to the failure of the attack employed to evaluate the networks' robustness. Previous research has demonstrated that depending on the considered model, the algorithm employed to generate adversarial examples may not function properly, leading to overestimating the model's robustness. In this work, we empirically study the robustness of over-parameterized networks against adversarial examples. However, unlike the previous works, we also evaluate the considered attack's reliability to support the results' veracity. Our results show that over-parameterized networks are robust against adversarial attacks as opposed to their under-parameterized counterparts.


Why Adversarial Reprogramming Works, When It Fails, and How to Tell the Difference

arXiv.org Artificial Intelligence

Adversarial reprogramming allows repurposing a machine-learning model to perform a different task. For example, a model trained to recognize animals can be reprogrammed to recognize digits by embedding an adversarial program in the digit images provided as input. Recent work has shown that adversarial reprogramming may not only be used to abuse machine-learning models provided as a service, but also beneficially, to improve transfer learning when training data is scarce. However, the factors affecting its success are still largely unexplained. In this work, we develop a first-order linear model of adversarial reprogramming to show that its success inherently depends on the size of the average input gradient, which grows when input gradients are more aligned, and when inputs have higher dimensionality. The results of our experimental analysis, involving fourteen distinct reprogramming tasks, show that the above factors are correlated with the success and the failure of adversarial reprogramming.