Goto

Collaborating Authors

 Feng, Xiaohua


A Survey on Recommendation Unlearning: Fundamentals, Taxonomy, Evaluation, and Open Questions

arXiv.org Artificial Intelligence

Recommender systems have become increasingly influential in shaping user behavior and decision-making, highlighting their growing impact in various domains. Meanwhile, the widespread adoption of machine learning models in recommender systems has raised significant concerns regarding user privacy and security. As compliance with privacy regulations becomes more critical, there is a pressing need to address the issue of recommendation unlearning, i.e., eliminating the memory of specific training data from the learned recommendation models. Despite its importance, traditional machine unlearning methods are ill-suited for recommendation unlearning due to the unique challenges posed by collaborative interactions and model parameters. This survey offers a comprehensive review of the latest advancements in recommendation unlearning, exploring the design principles, challenges, and methodologies associated with this emerging field. We provide a unified taxonomy that categorizes different recommendation unlearning approaches, followed by a summary of widely used benchmarks and metrics for evaluation. By reviewing the current state of research, this survey aims to guide the development of more efficient, scalable, and robust recommendation unlearning techniques. Furthermore, we identify open research questions in this field, which could pave the way for future innovations not only in recommendation unlearning but also in a broader range of unlearning tasks across different machine learning applications.


Federated Large Language Model: A Position Paper

arXiv.org Artificial Intelligence

Large scale language models (LLM) have received significant attention and found diverse applications across various domains, but their development encounters challenges in real-world scenarios. These challenges arise due to the scarcity of public domain data availability and the need to maintain privacy with respect to private domain data. To address these issues, federated learning (FL) has emerged as a promising technology that enables collaborative training of shared models while preserving decentralized data. We propose the concept of federated LLM, which comprises three key components, i.e., federated LLM pre-training, federated LLM fine-tuning, and federated LLM prompt engineering. For each component, we discuss its advantage over traditional LLM training methods and propose specific engineering strategies for implementation. Furthermore, we explore the novel challenges introduced by the integration of FL and LLM. We analyze existing solutions and identify potential obstacles faced by these solutions within the context of federated LLM.